
Datenanalyse in Geo-Informationssystemen

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Datenanalysemethoden

Geometrische Methoden

- Computed Geometry
- Polygon Overlay
- Zonengenerierung
- Triangulation/Nachbarschaftsgraphen

Topologische Methoden

- Netzwerkanalyse
- Nachbarschaftsanalyse
- Standortplanung

Statistische Methoden

- Beschreibende Statistik
- Analytische Statistik
- Geostatistik

Mengenmethoden

- Boolesche, relationale und Fuzzy-Algebra
- Sortieren und Suchen
- Aggregation

Modelle und Simulationen

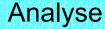
- Kartograph./Geograph.
 Modelle
- Systemanalytische Ansätze
- Ausbreitungs- und Simulationsmodelle

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

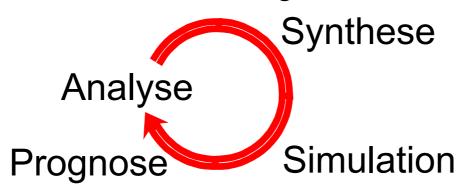
Statistische M.

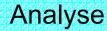
Zur Begriffsbildung 'Analyse'

- Analyse = Wissenschaftliche Untersuchung von Problemen oder Zusammenhängen
- Analyse = Zerlegung, Auflösung eines Zusammengesetzten in seine Bestandteile (Gegensatz: Synthese)
- Analyse = Systematische Untersuchung eines Gegenstandes
- Analyse = Wissenschaftlich zergliedern, zerlegen, untersuchen, auflösen
- => Artmäßige Analyse (qualitativ) = der Beschaffenheit etc. nach
- => Mengenmäßige Analyse (quantitativ) = der Menge, Größe etc. nach

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden

Statistische M.

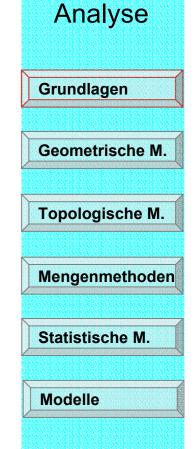
Regelkreis Analyse-Synthese-Simulation-Prognose

- Analyse = Zerlegung, Auflösung eines Zusammengesetzten in seine Bestandteile (Gegensatz: Synthese)
- Synthese = Zusammenfügen einzelner Teile zu einem höheren Ganzen
- Simulation = realitätsnahe Nachahmung technischer Vorgänge
- Prognose = Vorausbeurteilung einer Entwicklung

Grundlagen

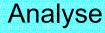
Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Grundproblem der Datenanalyse


- Gegeben: Spezielle Benutzerproblemstellung sowie Datenbestand mit Phänomenen A, B, C, ...
- Gesucht: Verknüpfung f(A, B, C, ..) zwischen Datenbestand etablieren, um eine Antwort (i.d.R. eine Präsentationsform wie Karte, Bericht etc.) auf die spezielle Benutzerproblemstellung zu erhalten.
- Verknüpfung: U = f (A, B, C ...)
- Funktionen f wie z.B.
 - Selektion
 - Boolesche Logik
 - Reklassifizierung
 - Flächenverschneidung mit Funktionen zwischen Daten

Mathematische Grundlagen der GIS-Analyse

- Koordinatengeometrie
- Numerische Methoden
- Topologie und Graphentheorie
- Mengenlehre
- Relationale Algebra in Datenbanken
- Statistik

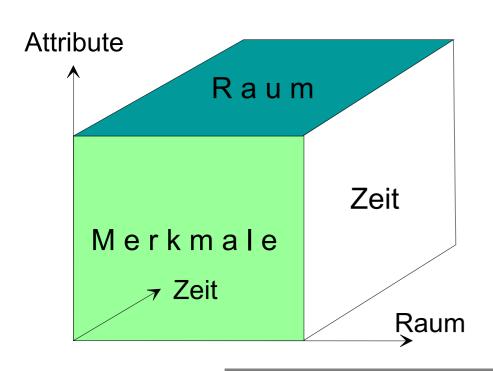
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.


Analyse als Differenzierungsmerkmal z.B. zu CAD, DB, Graphiksystemen

- Flächenverschneidung
- Statistische Analysen
- Aggregation
- Selektive Anfragen
- Topologische Analysen

Dimensionen im GIS - Der geographische Datenquader

Objekt O = f (Raum, Zeit, Merkmale) O = f (x,y,z,t,A)

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Klassifizierung der Datenanalysemethoden

Quaderdimension			
Methoden	Raum	Merkmal	Zeit
Computed Geometry	+	-	-
Geometrische Transformationen	+	-	-
Schnitte	+	-	-
Punkt-im-Polygon	+	-	-
Dreiecksvermaschung	+	0	-
Zonengenerierung	+	-	0
Flächenverschneidung	+	+	-
Aggregation	+	+	0
Netzwerkanalyse	+	+	0
Statistik	0	+	0
Geo-Statistik	+	+	+
Interpolation	+	+	+
Klassifikation	0	+	0
Mengenmethoden	0	+	0
Boolesche/Relationale Algebra	0	+	o
Digitales Geländemodell	+	+	-

Geometrische Methoden

- Metrik, Koordinatensysteme
- Computed Geometry
- Räumliche Suche und Clipping-Algorithmen
- Schnitte in 2 und 3 Dimensionen
- Punkt-im-Polygon-Problem
- Flächenverschneidung
- Dreiecksvermaschung und Thiessen-Polygon
- Andere

Analyse

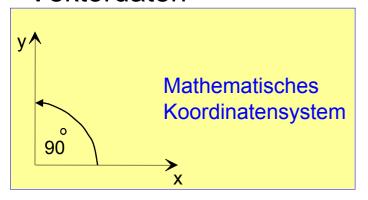
Grundlagen

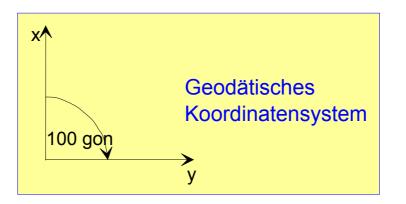
Geometrische M.

Topologische M.

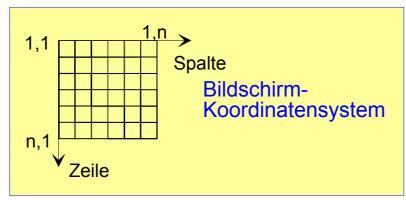
Mengenmethoden

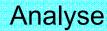
Statistische M.


Modelle



10


Koordinatensysteme


- Vektordaten -

- Rasterdaten -

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Metrik

Definition:

Eine Metrik auf einer Menge X ist eine Abbildung d: X*X auf R0 mit den folgenden Eigenschaften für beliebige P, Q, T aus X:

d(P,Q) = 0 falls P=Q ist Idempotenz d(P,Q) = d(Q,P) Symmetrie d(P,Q) <= d(P,T) + d(T,Q) Dreiecksungleichung

Ein Paar (X,d) heißt metrischer Raum.

Gängige Distanzfunktionen:

- Vektordaten
Euklidische Distanz: dE = sqrt((xi-xj)*(xi-xj)+(yi-yj)*(yi-yj))

- Rasterdaten d1=|i-k| d2=|j-l| mit P(i,j) und Q(k,l)

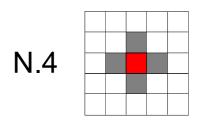
City-Block-Distanz: d4 = d1+d2

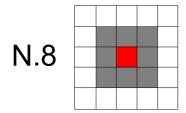
Schachbrettdistanz: d8 = max(d1,d2)

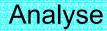
Euklidische Distanz: dE = sqrt (d1*d1+d2*d2)

Analyse

Grundlagen


Geometrische M.


Topologische M.

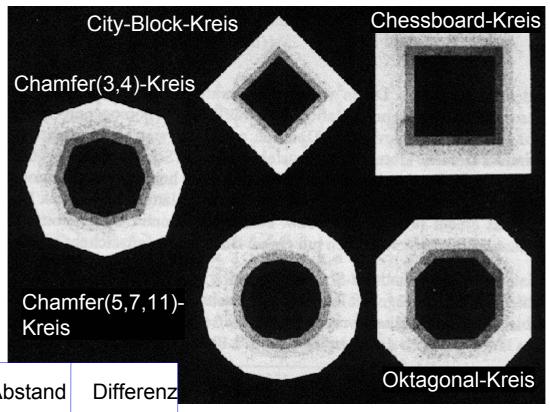

Mengenmethoden

Statistische M.

Nachbarschaftstypen N.4 und N.8

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.

Vergleich verschiedener Metriken

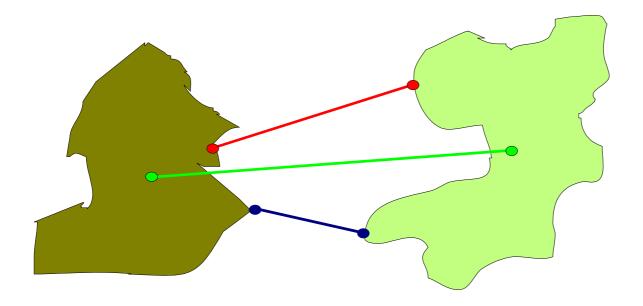
Metrik **Abstand Euklid** 23.324 0.000 City-Block 8.676 32.000 Schachbrett -3.32420.000 Oktagonal 21.000 -2.324Chamfer(3,4) 24.000 0.676 Chamfer(5,7,11) 23.200 -0.124

Beispiel: P (5,5) und Q (25,17) aus L. Tang, 1990

Analyse

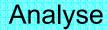
Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.



Definitionsproblem

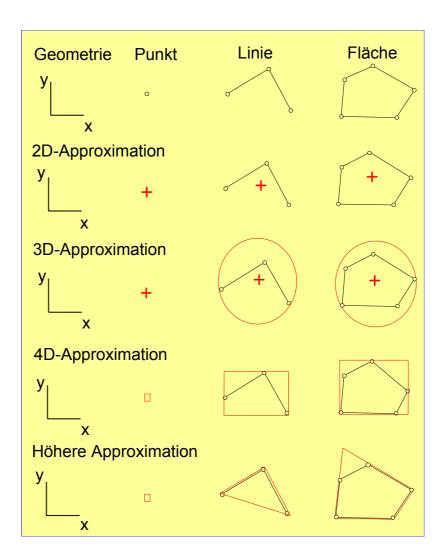
beliebiger Abstand Zentroidabstand

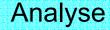
Minimaler Abstand

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden


Statistische M.

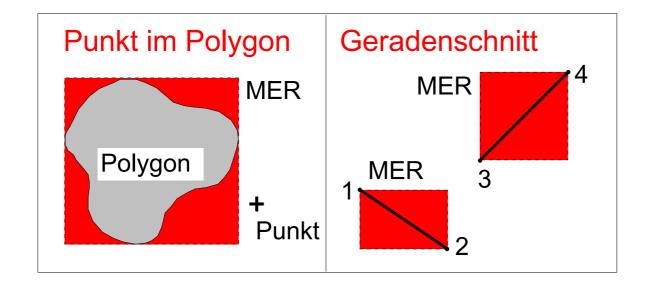
Approximation räumlicher Objekte

- als Vereinfachung der Geometrie:
 - für das Suchen und Indizieren im Speicher des Rechners
 - als Näherung für geometrischeAlgorithmen

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Grobtests mittels MER

 MER: minimal einschließendes achsparalleles Rechteck

Analyse

Grundlagen

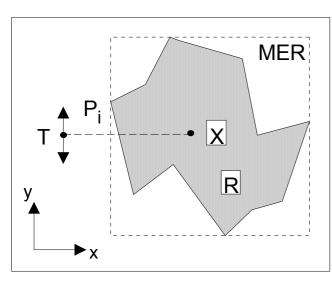
Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Modelle



17

Punkt-im-Polygon (Vektor)

Theorem von Jordan:

 Jedes Polygon R teilt die Ebene in zwei disjunkte Regionen (Inneres und Äußeres). Ist die Anzahl echter Schnitte eines beliebigen Teststrahls durch X mit den Kanten des Polygons ungerade, so liegt X innerhalb von R, ansonsten außerhalb.

- Wähle Teststrahl durch X parallel zur Koordinatenachse.
- Wähle Punkt T auf Teststrahl durch X garantiert außerhalb von R.
- Untersuche, ob Strahl TX durch einen Polygoneckpunkt verläuft.

Wenn ja, verschiebe T in y-Richtung solange, bis dies nicht mehr der Fall ist (nur echte Schnitte gesucht).

Zähle Anzahl echter Schnitte von TX mit den (n-1)
 Polygonkanten.

 Ist mod(Anzahl,2)=0, liegt X außerhalb.
 Ist mod(Anzahl,2)=1, liegt X innerhalb.

NB: mod(N,2) = N-(int)(N/2)*2

Alternativ: Winkelsummentest

Analyse

Grundlagen

Geometrische M.

Topologische M.

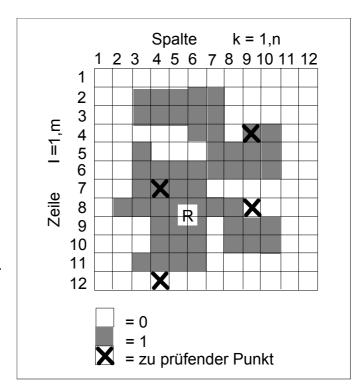
Mengenmethoden

Statistische M.

Punkt-im-Polygon (Raster)

Annahmen:

Alle Zellen innerhalb des Polygons sind mit 1 belegt


Alle Zellen außerhalb des Polygons sind mit 0 belegt

Algorithmus:

Prüfe für Zeile I (I=1,m), ob Zeilenindex I gleich Punktzeilenindex i ist

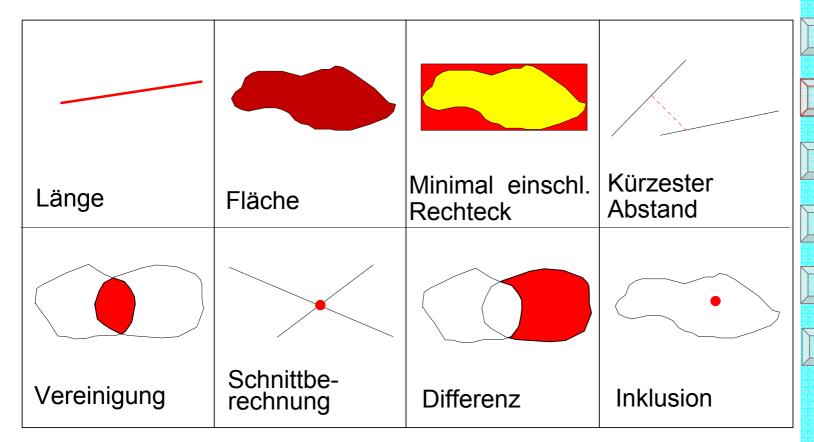
Wenn ja, prüfe für Spaltenindex k (k=1,n), ob Spaltenindex k gleich Punkt-spaltenindex j ist. Wenn ja, prüfe ob Polygonzelle eine 1 trägt. Dann ist ge-suchter Punkt innerhalb, sonst außerhalb.

Wenn Punkt (i,j) nicht in dieser Zeile und Spalte des Polygons liegt, erhöhe den Zeilenindex I und beginne von vorne.

Analyse

Grundlagen

Geometrische M.


Topologische M.

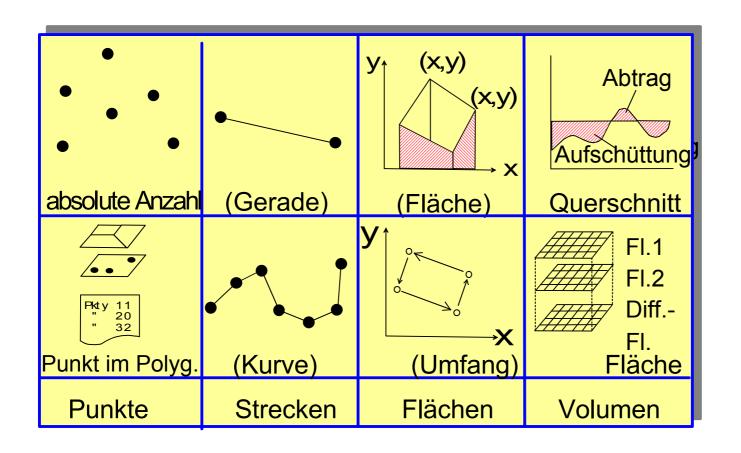
Mengenmethoden

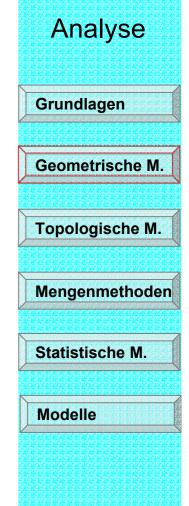
Statistische M.

Raumbezogene Operatoren (Auszug)

Analyse

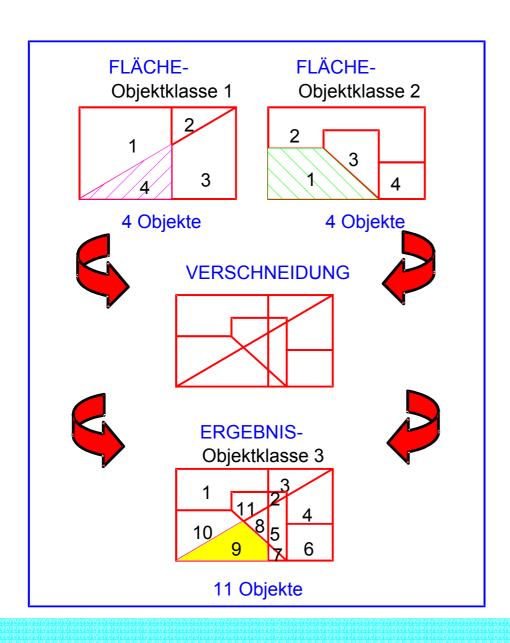
Grundlagen


Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.


Geometrische Grundfunktionen - Computed Geometry

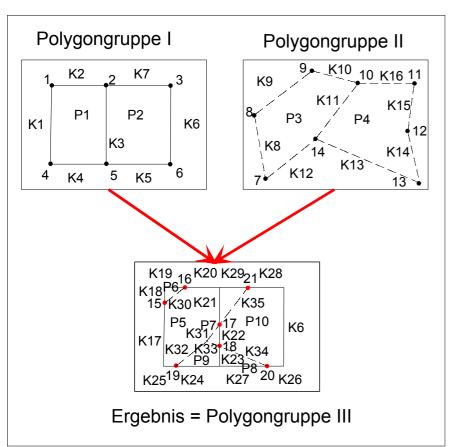
Flächenverschneidung: Fläche mit Fläche

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

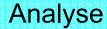
Statistische M.

Beispiel Flächenverschneidung

• Gegeben sind zwei Gruppen von Polygonen I und II, die jeweils bestimmte Eigenschaften besitzen. Bilden Sie eine neue Gruppe von Polygonen III, die von den beiden Ausgangsgruppen gewünschte Eigenschaften erben.

Gruppe I:

Grundstücke bestimmter Eigentümer (Maier, Müller etc.)


Gruppe II:

Flächen bestimmter Landnutzung (Ackerland, Bauland, etc.)

Gruppe III:

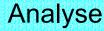
Flächen, die bestimmtem Eigentümer gehören und bestimmte Landnutzung besitzen

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.

3 Teilschritte bei der Flächenverschneidung

1. Kantenschnitte:

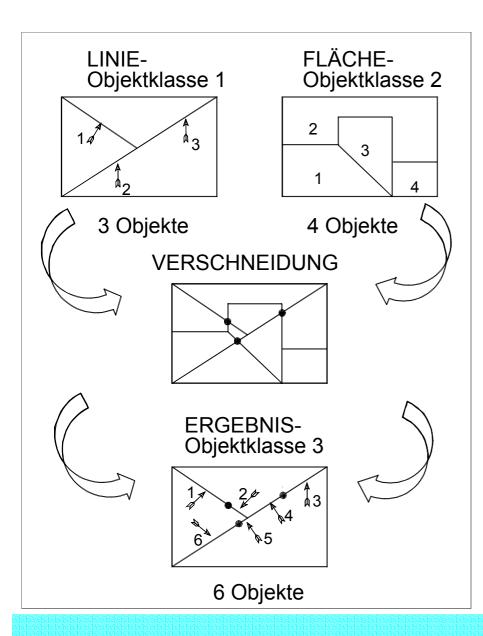
- Unterteile die sich schneidenden Kanten der Ausgangspolygone an den Schnittpunkten.
- => Liste aller Knoten und Kanten: es gibt keinen weiteren Schnitt mehr zwischen den Polygonen.
- 2. Polygonformierung:
 - Verknüpfe die einzelnen Kanten so, daß neue geschlossene Polygone entstehen.
 - => Liste aller Polygone.
- 3. Überlagerungsidentifizierung:
 - Untersuche Ergebnispolygone auf Herkunft aus Ausgangspolygonen.
 - => Attributübertragung.

Grundlagen

Geometrische M.

Topologische M.

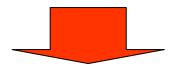
Mengenmethoden


Statistische M.

Modelle

24

Flächenverschneidung (Linie mit Fläche)



Klasse 1:

- Alle Leitungen eines EVU

Klasse 2:

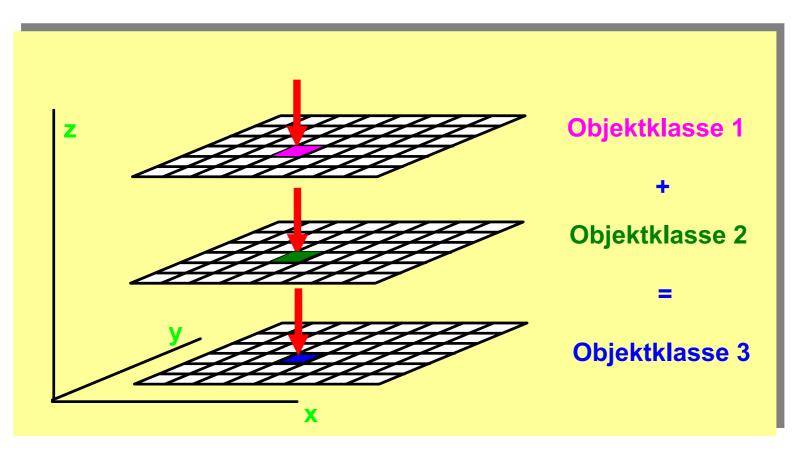
 Alle Flächen im Gemeindebesitz

Klasse 3:

 Alle Leitungen auf Flächen im Gemeindebesitz

Analyse

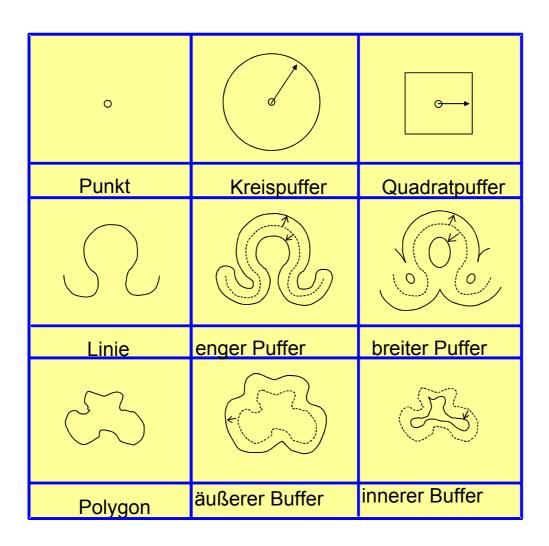
Grundlagen

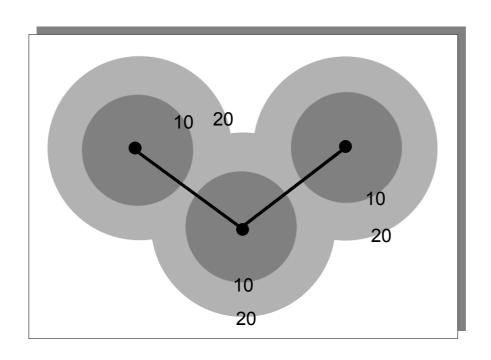

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.


Flächenverschneidung Raster mit Raster


Geometrische Grundfunktionen: Pufferbildung/Zonengenerierung

Analyse Grundlagen Geometrische M. Topologische M. Mengenmethoden Statistische M. Modelle

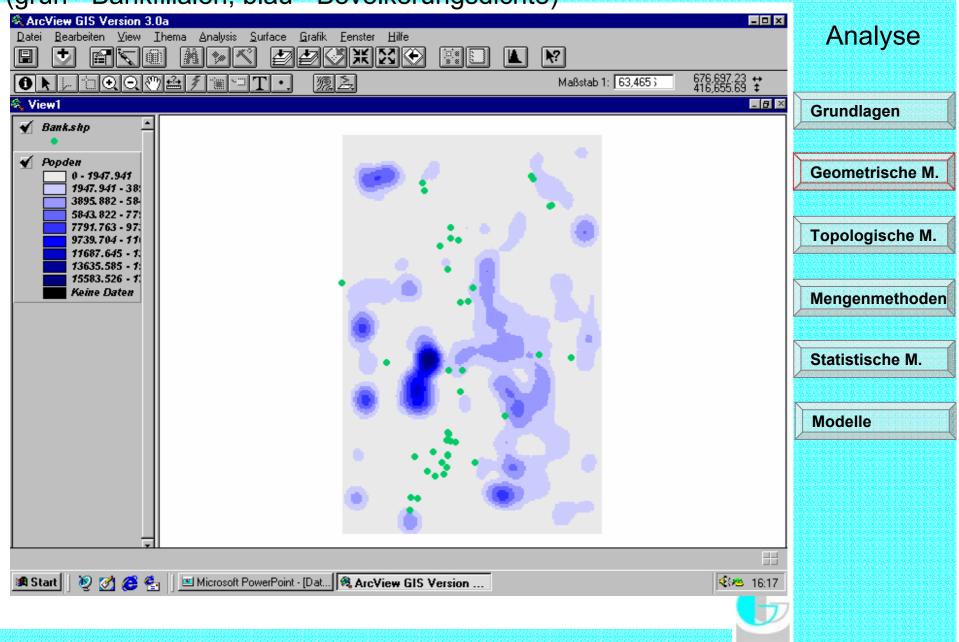
Reisezeitenprobleme (geometrisch)

Analyse

Grundlagen

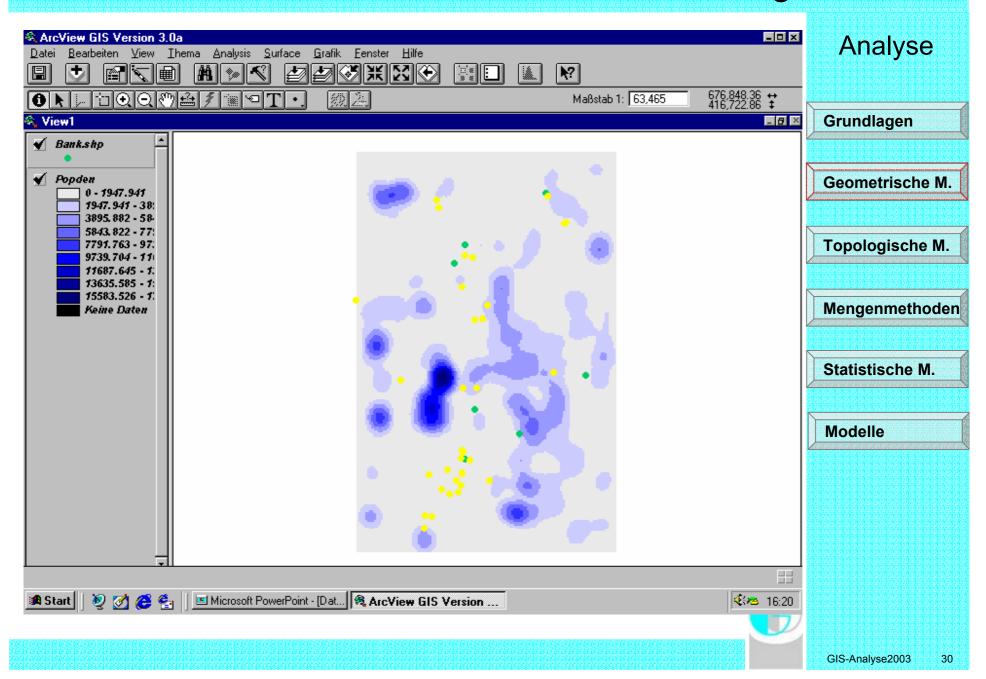
Geometrische M.

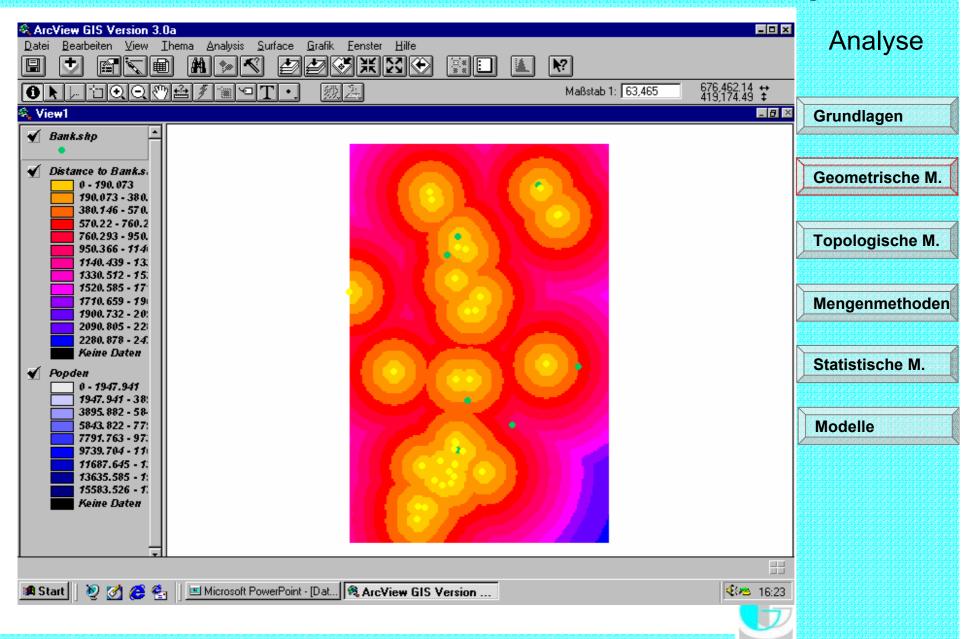
Topologische M.


Mengenmethoden

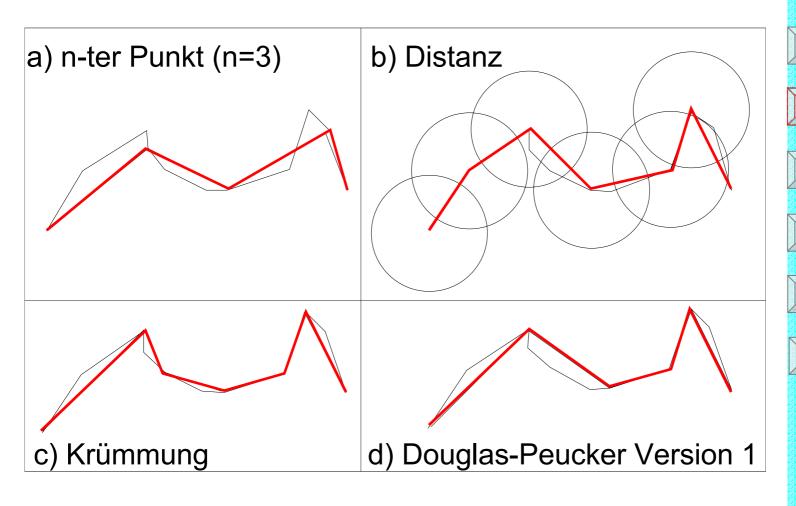
Statistische M.

Erreichbarkeiten von Bankfilialen


(grün - Bankfilialen, blau - Bevölkerungsdichte)


GIS-Analyse2003

29


Bankfilialen mit mehr als 10 Mill. \$ Privateinlagen

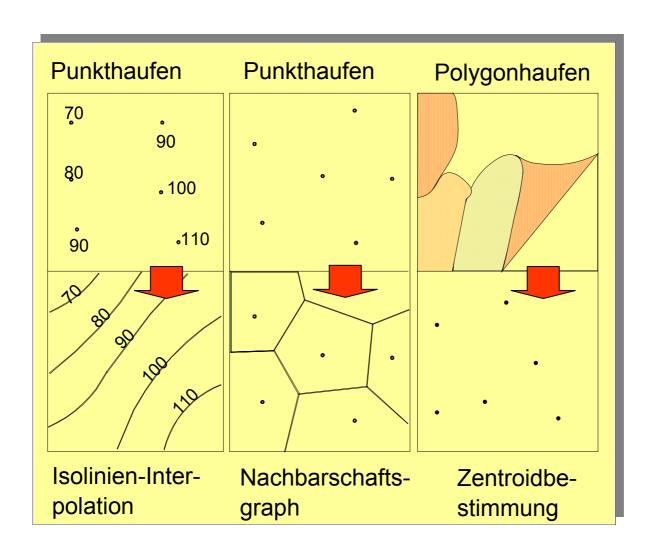
Abstandskarte zu Banken >10 Mill. \$ Privateinlagen

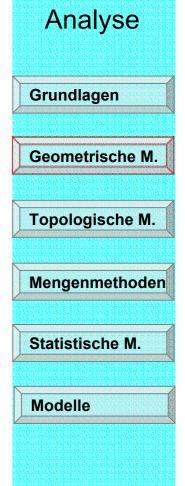
Linienglättung resp. Linienausdünnung

Analyse

Grundlagen

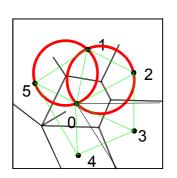
Geometrische M.

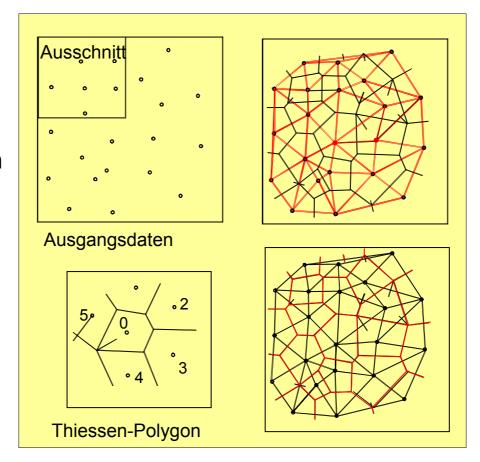

Topologische M.


Mengenmethoden

Statistische M.

Interpolation, Nachbarschaftsgraphen und Zentroidbestimmung





Delaunay-Triangulation/Thiessen-Diagramme

(auch Voronoi-Diagramme oder Dirichlet-Tesselationen)

Prinzip:
Umkreis um drei Punkte
beinhaltet keinen weiteren
Punkt mehr

Analyse

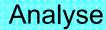
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.


Dreiecksvermaschungen

- Abschätzformel :
- -> Anzahl der Dreiecke = 2n-b-2
- n = Anzahl der Punkte.
- b = Anzahl der Punkte auf Rand
- Algorithmen zur Dreiecksvermaschung: R. Sedgewick (1984)
- Theorie zur Delaunay-Triangulation : B. Delaunay (1934)
 - Satz von M.I.Shamos und D. Hoey (1975):

Zwei Punkte in einer Punktmenge sind genau dann benachbart, wenn sie eine gemeinsame Seite des Thiessendiagramms besitzen.

- Eigenschaften der Delaunay-Triangulation :
 - Innerhalb des Umkreises um ein Delaunay-Dreieck liegt kein weiterer Punkt.
 - Dreiecke des Gebietes überlappen sich nicht.
 - Gebiet wird durch konvexe Hülle umgeben.
 - Delaunay-Triangulation ist eindeutig (unabh. von Bearbeitungsfolge)
- Algorithmus von D.T. Lee und B.J. Schachter (1980) nach der Divide and Conquer-Strategie:
 - Füge Punkte des Gebietes in k-D-Baum ein.

 - Trianguliere Teilgebiet in k-D-Zweig.Schließe Teilgebiete zusammen, bilde obere und untere gemeinsame Tangente der Teilbereiche.
 - Vermasche Teilbereiche zwischen beiden Tangenten und dem Rand der existierenden Vermaschung neu.
 - Danach ist das gesamte Gebiet nach Delaunav trianguliert.

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Nachbarschaftsgraphen im Rasteransatz

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Nachbarschaftsgraphen im Rasteransatz

Punktverteilung Nachbarschaftsgraph 6 6

Analyse

Grundlagen

Geometrische M.

Topologische M.

(Oldani

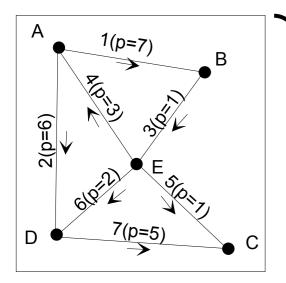
Mengenmethoden

Statistische M.

Modelle

Ausgangspunkt
Abstand 1
Abstand 2
Abstand 3
Abstand 4

Topologische Datenanalysemethoden


- Metrik
- Adjazenz und Inzidenz
- Kürzeste Wege
- Floyd-Warshall-Algorithmus
- Dijkstra-Algorithmus
- Beste Wege, beste Standorte, Travelling SalesmanProblem
- •

Topologische Grundlagen

Kürzeste Wegebeispiel (Floyd-Warshall-Algorithmus)

Kante	von	nach	Gewicht
1	Α	В	7
2	Α	D	6
3	В	Ε	1
4	Ε	Α	3
5	Ε	С	1
6	Ε	D	2
7	D	С	5

Bewertungsmatrix:

	Α	В	Е	С	D
A B E C D	0 0 3 0	7 0 0 0 0	0 1 0 0 0	0 0 1 0 5	6 0 2 0

Adjazenzmatrix B B :

	Α	В	Е	С	D
A B E C D	3	-1 2	-1 -1 4	0 0 -1 2	-1 0 -1 -1 3

Inzidenzmatrix B:

	Α	В	Е	С	D
1 2 3 4 5 6 7	1 1 0 -1 0 0	-1 0 1 0 0 0	0 0 -1 1 1 1	0 0 0 0 -1 0 -1	0 -1 0 0 0 -1 1

Kürzeste Wegesummen nach Floyd-Warshall:

	Α	В	Е	С	D
ABEC	11 4 3 0	7 11 10 0	8 1 11 0	9 2 1 0	6 3 2 0
D	0	0	0	5	0

Mögliche Wege:

A->A via B,E =11

A -> B = 7

A->E via B=8

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

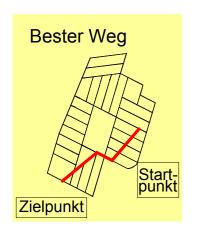
Alle Wege im Graphen

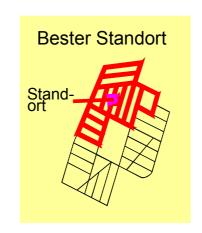
Weg von Knoten	nach Knoten	über Knoten	Gewichtssumme
A A	A B	B,E direkt	11 7
A	Ē	В	8
A	C	B,E	9
A	D	direkt	6
В	Ā	E	4
В	В	E,A	11
В	E	direkt	1
В	С	E E	2 A 1/n -
В	D		$\frac{2}{3}$ $\frac{1}{(p=7)}$ B
С	В	E,A	11 _ >
E	Α	direkt	3 6
E	В	Α	10 6
E	E	A,B	10 11 1 0 2 0 7 0 1 0 2 0 7
E	C	direkt	1 😅 🗸
E E E C C C C C D	D	direkt	2 N E
C	A	-	- 5
C	В	-	- 6/9/2
C	E	-	7(p=5)
C	С	-	- D
C	D	-	-
	A	-	-
D	B E	-	-
D	C	- direkt	- 5
D D	D	UIICKL	U and the second
U	U	-	

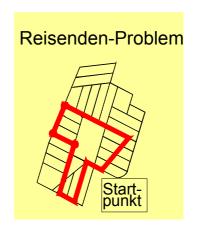
Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden


Statistische M.

Netzwerkanalysen - 3 Kategorien von Problemstellungen

Günstigste Wege von einem Ort zu einem anderen Ort:

- geometrisch kürzester Weg
- topologisch bester Weg
- kostengünstigsterWeg

Günstigster Standort eines geplanten Objektes unter Berücksichtigung der Erreichbarkeit und der Einzugsgebiete:

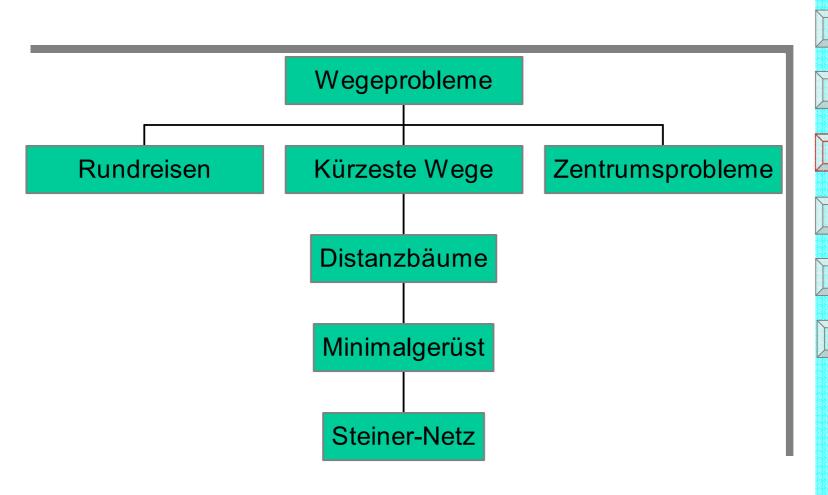
- topologischeAlgorithmen
- Flächenverschneidung
- 2D- Median

Das Handlungsreisenden-Problem (Traveling Salesman):

- Operations research
- LineareOptimierung
- Graphentheorie

Analyse

Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden

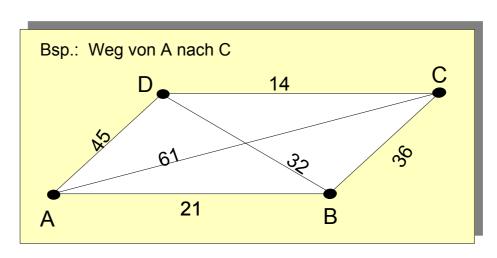
Statistische M.

Wegeprobleme in Netzen und Graphen

Analyse

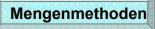
Grundlagen

Geometrische M.


Topologische M.

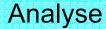
Mengenmethoden

Statistische M.



Zielfunktionen für kürzeste Wege

- Minimiere die Entfernung (ABC=57)
- Minimiere die Reisezeit (ABC=57)
- Minimiere das Durchlaufen von Kreuzungen (AC=61)
- Minimiere das Abbiegen (speziell links wegen Gegenverkehr) (AC=61)
- Minimiere den Weg unter Berücksichtigung von Zwangspunkten (über D => ADC=59)
- => Kürzeste Wege sind von der Problemstellung abhängig
- => Anwendung in Fahrzeugnavigationssystemen



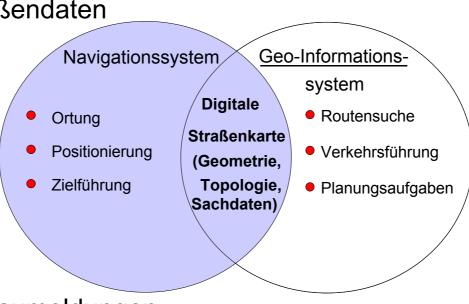
Statistische M.

Fahrzeugnavigation (Kürzeste Wege in einem Netz)

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Fahrzeugnavigationssysteme

- Preise: 1000 4000 €
- Komponenten:
 - GPS
 - CD-ROM mit Straßendaten
 - Kompaß
 - Sprachausgabe
 - Radsensoren
 - Richtungspfeile
- Probleme:
 - Lernaufwand
 - keine aktuellen Staumeldungen
 - Tunnel-Ausfälle
 - Navigationsfehler

Analyse

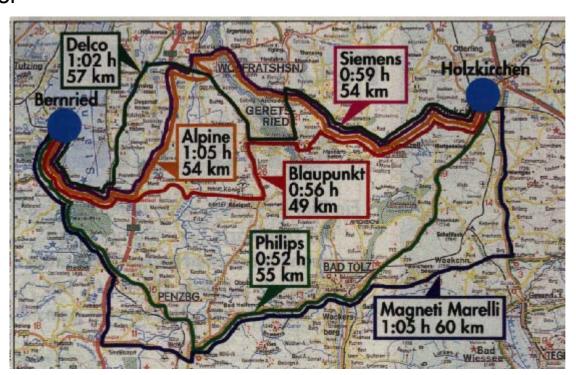
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.


Modelle

Fahrzeugnavigationssysteme

Quelle: ADAC Motorwelt 4/97

- Blaupunkt Travel Pilot
- Alpine NVE-N 055VP
- Magneti Marelli Route Planner

- Philips Carin 520
- Siemens Auto Scout
- Delco Telepath

Analyse

Grundlagen

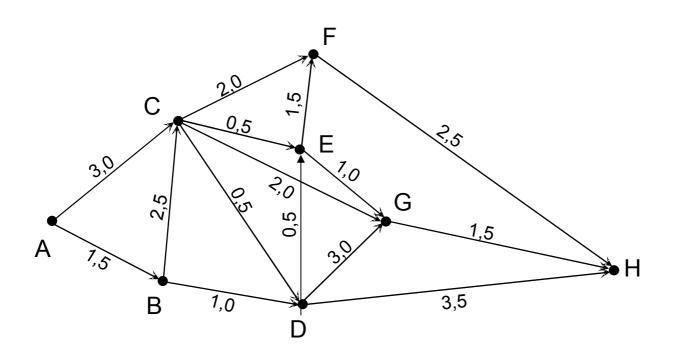
Geometrische M.

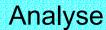
Topologische M.

Mengenmethoden

Statistische M.

Geographic Data File (GDF)


- Standard zum Austausch digitaler Daten für Fahrzeugnavigationssysteme in Europa
- GDF 1.0 1988 (Eureka)
- GDF 2.0 1990 (Drive I EDRM, PANDORA)
- GDF 2.1 1993 (Drive II EDRM II)
- CEN TC/278 Normierung von GDF
- => europaweiter Datensatz verfügbar


Kürzester Weg zwischen 2 Knoten

Beispiel: Bergwanderung soll von A zur Hütte H führen. Bewertung ist Gehzeit in [h]. Von D nach E führt Sessellift. Welches ist die kürzeste Gehzeit von A nach H.

Lösung: Schrittweises Vorgehen

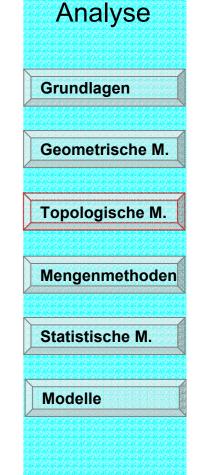
Kumulation von sequentiellen kürzesten Weglängen

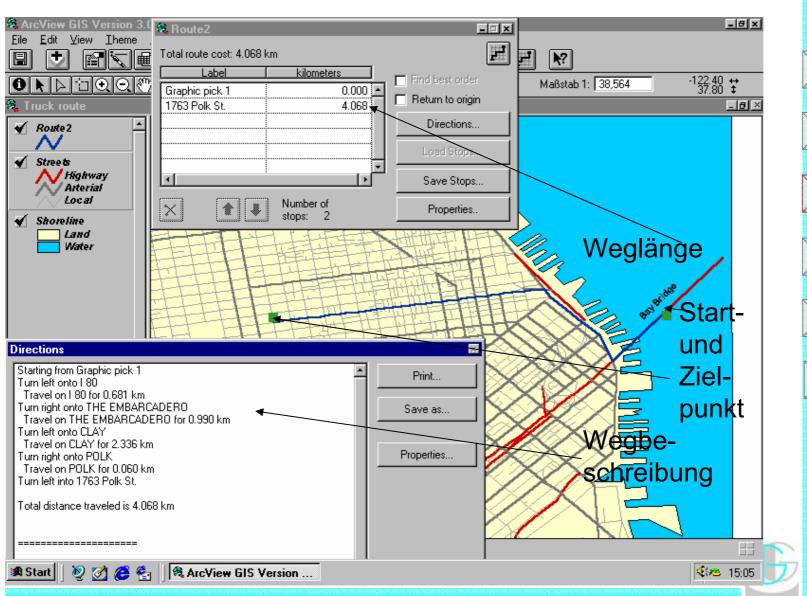
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.


noch kürzester Weg zwischen 2 Knoten

Schritt	Knoten	Nachbarn	Wege und Weglängen
1	A(0)	B, C	L(AB)=1,5; L(AC)=3,0
2	B(1,5)	C, D	L(ABC)=4,0; L(ABD)=2,5; L(ACD)=3,5
3	D(2,5)	E,G,H	L(ABDE)=3,0; L(ABDG)=5,5; L(ACDH)=6,0 L(ACE)=3,5; L(ACG)=5,0
4	E(3,0)	F, G	L(ABDEF)=4,5; L(ABDEG)=4,0; L(ACF)=5,0 L(ACG)=5,0
5	G(4,0)	Н	L(ABDEGH)=5,5; L(ABDH)=6,0 L(ACFH)=8,5
6	H(5,5)	-	

Der kürzeste Weg von A nach H ist ABDEGH = 5,5 Stunden

Kürzester Weg mit ArcView Network Analyst

GIS-Analyse2003

Tripelalgorithmen

- Sei K endlich und angeordnet K: = $(v_1, ..., v_n)$, G= (K,β) ein gewichteter Graph ohne parallele Kanten, $\beta >= 0$
- Methode: Vergleiche die Länge aller Kanten von G (K,β) mit den Längen aller möglichen Umwege und senke Gewicht der Kante, falls Umweg kürzer ist

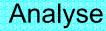
Algorithmus: For i:= 1 to n do $for j := 1 \ to \ n \ do$ $for k := 1 \ to \ n \ do$ $for k := 1 \ to \ n \ do$ $\beta(v_j, v_k) := min \ \{\beta(v_j, v_k), \ \beta(v_j, v_i) + \beta(v_i, v_k)\}$

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Noch Tripelalgorithmus

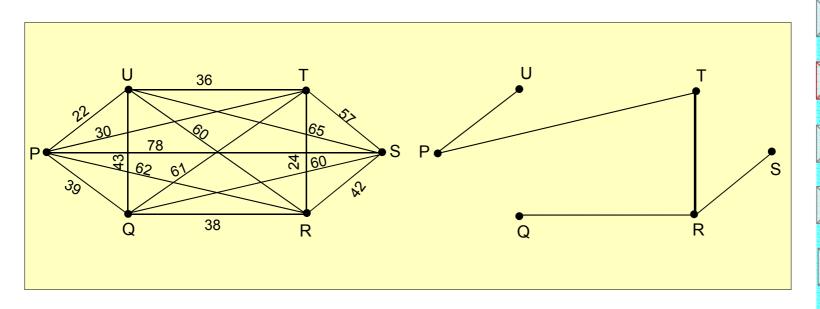
modifizierter Tripelalgorithmus von Dantzig: For i:= 1 to n do for j:= 1 to i-1 do for k:= 1 to i-1 do $\beta(v_i,v_k) := \min \left\{ \beta(v_i,v_k), \, \beta(v_i,v_i) + \beta(v_i,v_k) \right\}$

- Satz: Der Tripel-Algorithmus berechnet alle kürzesten Wege im Graphen
- Beweisskizze:
 - 1.) Resultat des Algorithmus ist unabhängig von der Anordnung v (durch Induktion)
 - $-2.) \beta(u,v) = d(u,v) \quad \forall u,v$
- Zeitbedarf: O (n³)

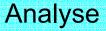
Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.



Minimales Gerüst

- Beispiel: 6 Städte werden mit Glasfaserleitungen vernetzt.
- Ziel: Alle Städte miteinander verbinden bei minimalen Kosten

- Lösung: Ordnen der Kanten nach Bewertung
 - PU(22), RT(24), PT(30), TU(36), QR(38), PQ(39), RS(42),
 QU(43), ST(57), RU(60), QT(61), PR(62), SU(65), PS(78),
 QS(84)

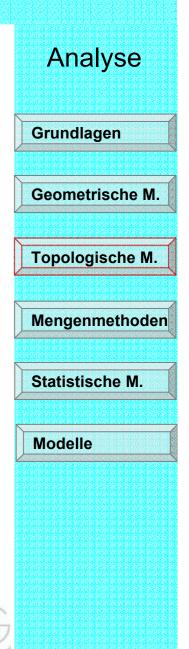
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.


Modelle

noch minimales Gerüst

- Entsteht ein Kreis, entsprechende Kante weglassen
- PU, RT, PT, (TU weglassen), QR, (PQ weglassen), RS
- Reihenfolge ist ein Minimalgerüst

Definition : Gegeben ist ein zusammenhängendes Netz (E,K) bzw. planarer Graph, bei dem jede Kante $k_i \in K$ mit $d_i \geq 0$ bewertet ist. Ein Gerüst mit den Kanten $k_1, k_2, ..., k_r$ heißt Minimalgerüst, wenn $\sum_{i=1}^r d_i$ minimal ist. $\sum_{i=1}^r d_i$

Travelling-Salesman-Problem

Finden einer Rundreiseroute mit folgenden Annahmen:

Start- und Zielort der Rundreise identisch

einmaliger Besuch verschiedener Städte in beliebiger Reihenfolge

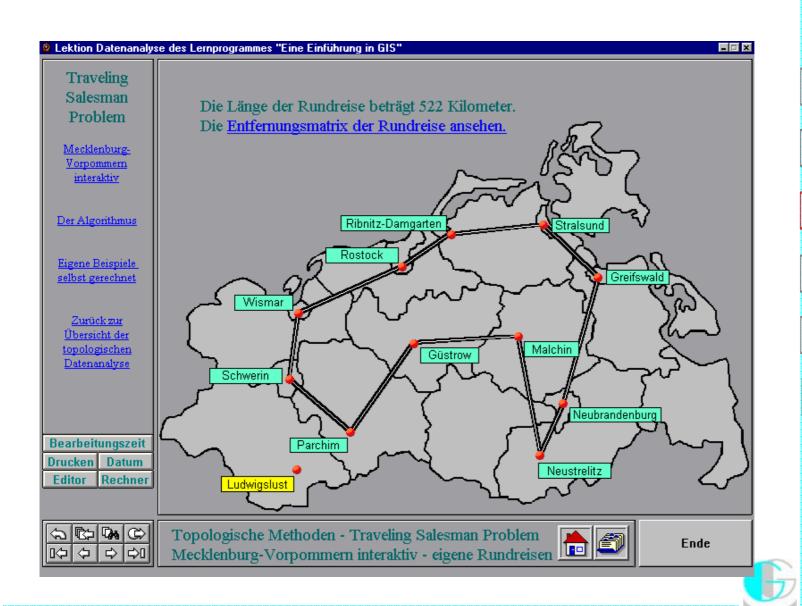
Direktverbindungen nicht zwischen allen Orten vorhanden

Argebnis: optimale Rundreise

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

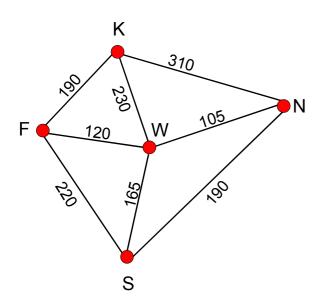
Statistische M.

Beispiel: Datenanalyse im MM-GIS-Tutor

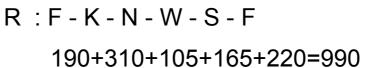
Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden


Statistische M.

Rundreiseproblem

 Beispiel: Geschäftsreisender soll von Frankfurt (F) aus mit Auto die Städte Kassel (K), Nürnberg (N), Stuttgart (S) und Würzburg (W) besuchen und anschließend nach F zurückkehren

$$R_3 = min?$$

Analyse

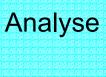
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.



noch Rundreiseproblem

- Allgemein gilt (vollständiges Netz (Graph) mit n Ecken)
- n --> 1/2*(n-1)*(n-2)*...*2*1 = 1/2(n-1)! , ne N +
- Verfahren wird bei zunehmender Anzahl n sehr aufwendig

Beispiel: Rechnerzeiten für Rundreiseproblem abhängig von n

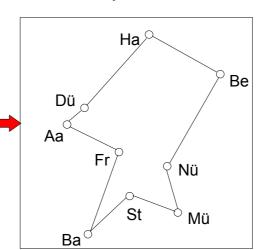
Knoten n	6	10	11	12	13	14
Zeit t	0,001 [s]	4 [s]	40 [s]	8 [min]	2 [h]	1 [Tag]

Grundlagen

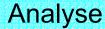
Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.

Beispiel zum Handlungsreisendenproblem


- Gesucht ist die beste Route zu einer Rundreise über die Städte: Aachen, Basel, Berlin, Düsseldorf, Frankfurt, Hamburg, München, Nürnberg, Stuttgart
- Die Entfernungen sind auf jeweils volle 10 km gerundet in der abgebildeten Matrix gegeben.
- Die Entfernung ergibt sich durch Multiplikation mit 10.

	Aa	Ва	Ве	Dü	Fr	На	Mü	Nü	St
Aa	0	57	64	8	26	49	64	47	46
Ва	57	0	88	54	34	83	37	43	27
Ве	64	88	0	57	56	29	60	44	63
Dü	8	54	57	0	23	43	63	44	41
Fr	26	34	56	23	0	50	40	22	20
На	49	83	29	43	50	0	80	63	70
Mü	64	37	60	63	40	80	0	17	22
Nü	47	43	44	44	22	63	17	0	19
St	46	27	63	41	20	70	22	19	0

Lösungsansätze mittels Approximation, Graphentheorie, heuristische Verfahren, Optimierung

- => optimale und suboptimale Verfahren (D. Jungnickel, 1987)
- => Probieren aller Kombinationen 8!/2 = 20160 mögliche

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Zentrumsprobleme - optimale Standortsuche

- Entlang einer Linie (Polygon)
- In einer Fläche
- Im Raum
- => Anwendungen in der Infrastrukturplanung
- Standorte von Firmen, Schulen, Krankenhäusern
- Standorte von Flughäfen, Kläranlagen

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Zentrumsprobleme

Standort eines Zeitungskioskes entlang einer Straße

- Gegeben: Straße in einem Wohngebiet mit den Anliegern A,B,C,D,E,F,G
- Gesucht: Standort des Kiosks, so daß Entfernung (min) zu allen Anliegern minimal wird

Lösungen/Zielfunktionen:

Mittelwert:

 $X = 1/7\Sigma pos(i) = 7$

Minimum der quadratischen Entfernungen = 34

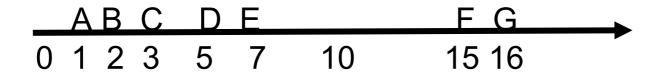
Median:

M = 50%-Quantil = 5

Minimum der Absolutbeträge = 32

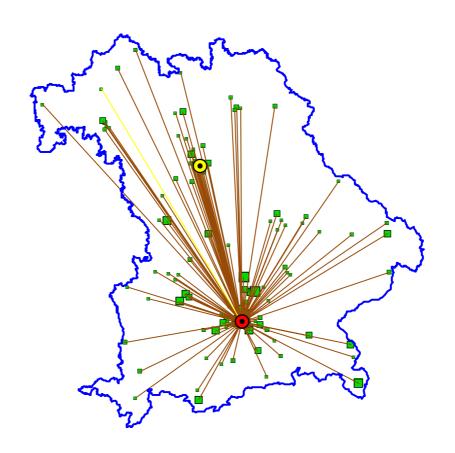
Analyse

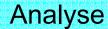
Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.

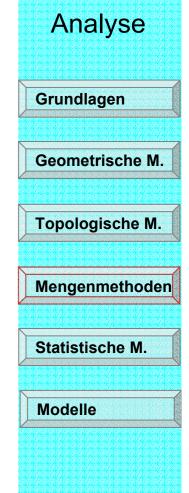

Modelle

Transportnetz Luftlinie mit Script Spiderdiagramm

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Mengenmethoden

- Mengenlehre
- Boolesche Logik
- Fuzzy-Settheorie
- Relationale Algebra
- Sortieren und Suchen
- Mathematische Funktionen
- Aggregation
- Andere

Grundlagen der Mengenlehre

A und B seien Mengen. Dann heißt A B der Durchschnitt der beiden Mengen. Ihm gehören alle Elemente an, die sowohl in A als auch in B sind. Haben A und B keine gemeinsamen Elemente, so ergibt sich die leere Menge 0. Die Vereinigung A U B besteht dagegen aus den Elementen, die wenigstens in einer der beiden Mengen sind. Die Komplementärmenge A von A enthält genau jene Elemente aus R, die nicht in A enthalten sind.

Kommutatives Gesetz : $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Assoziatives Gesetz: AU (BUC) = (AU B)U C

 $A \cap (B \cap C) = (A \cap B) \cap C$

Absorptionsgesetz : $AU(A \cap B) = A$

 $A \cap (AUB) = A$

Distributives Gesetz : $AU(B\cap C) = (AUB)\cap (AUC)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Komplementgesetz : AU 0 = A

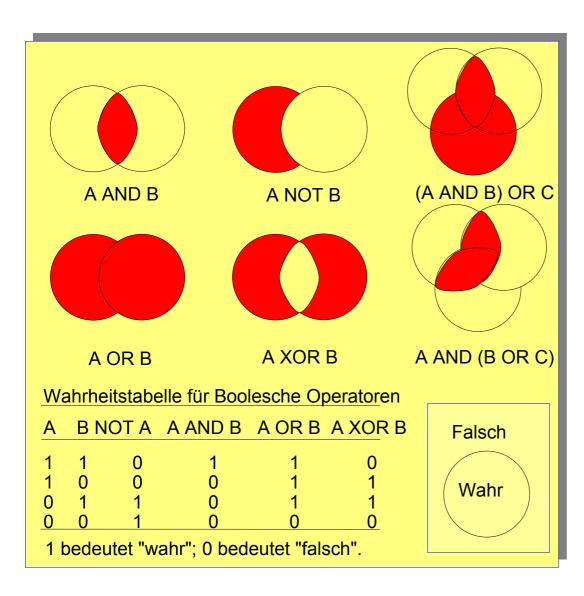
 $A \cap S = A$ $A \cup \overline{A} = S$

 $A \cap \overline{A} = 0$

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.

Boolesche Logik

- Zweiwertige
- Venn-

Diagram

Logik

me

- Wahrheitstabellen
- Einbindung in gängigeProgrammierung

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Beispiel: Mengenoperationen im Raster

Identifiziere das Gebiet, welches die folgenden drei Kritierien erfüllt:

- Geeignete Bodenbedingungen
- Wassertiefe kleiner 3 m
- mehr als 200 m entfernt von Mangroven

Mathematische Voraussetzungen hinsichtlich Metrik

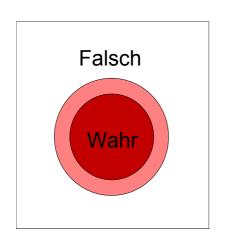
- Rasterzellengröße ist 200 m
- Schachbrettdistanz bzw. N.8-Nachbarschaft

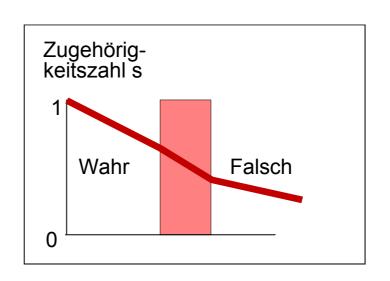
Bodenbedingungen (1=gut, 0=schlecht oder keine Daten)	Wassertiefe in m	Mangroven (1=Mangroven, 0=keine, 2= 200m-Zone)	Resultat (1=true, 0=false)
0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0	0 1 2 3 4 4 0 1 2 3 4 4 0 1 2 2 3 3 0 1 1 2 2 2 AND 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 0 0 0 0

Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden

Statistische M.

Fuzzy-Logik

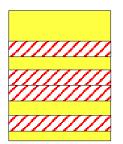
- Mehrwertige Logik (Fuzzy-Sets)

If (A mit s=x) AND (B mit s=y) THEN (C mit s=z)

Analyse

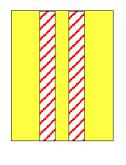
Grundlagen

Geometrische M.

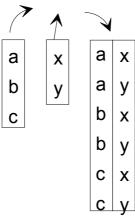

Topologische M.

Mengenmethoden

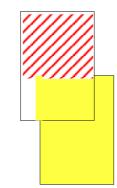
Statistische M.

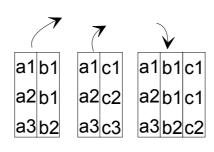

Relationale Operatoren

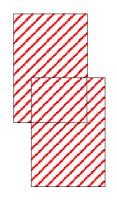
Selektion

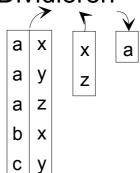


Schnitt


Projektion


Produkt


Differenz


z (Natürliches) Join

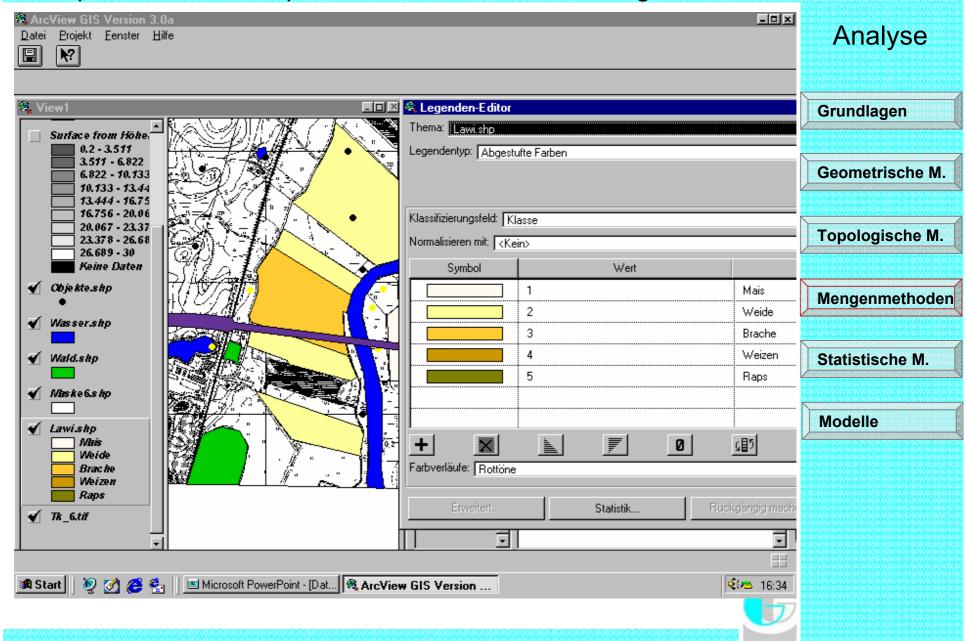
Vereinigung

Dividieren

Analyse

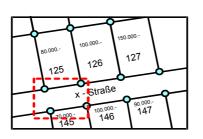
Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.



Reklassifizierung landwirtschaftlicher Flächen mittels Projektion der Spalte Klasse, Uniqueness und Einfärben des Ergebnisses

GIS-Analyse2003

Selektive Anfragen im GIS-Datenbestand

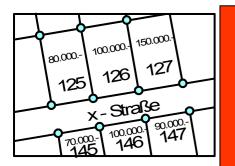
ANFRAGEBEISPIELE GEOMETRISCH

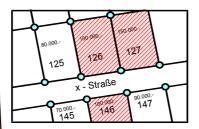
- alle Grenzsteine im

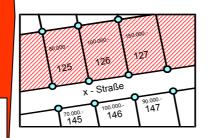
Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden


Statistische M.

Modelle

DATENBESTAND

BESCHREIBEND

 alle Parzellen mit Wert über 100.000.-

TOPOLOGISCH

alle Parzellen anx-Straße links grenzend

KOMBINIERT

alle Parzellen an x-Straße links grenzend mit Wert über 100.000.und innerhalb

Suchen in großen Datenbeständen

Gängige Suchverfahren

- z.B. nach Name=Bill in 10.000 Datensätzen
 - lineare Suche (O(n) im Schnitt 5.000 Vergleiche, worst case 10.000)
 - logarithmische Suche nach Aufbau von sortierten Listen (O(log(n)=14 Vergleiche)

Baumsuchmethoden

- Werden eingesetzt zur Lösungssuche bei Problemen, deren Suchraum in Baumform repräsentiert werden kann
- starten an der Wurzel und laufen entlang der Kanten, bis ein Knoten gefunden ist, der eine Lösung darstellt
- unterscheiden sich in der Ordnung, in der die Knoten des Baumes besucht werden

Analyse Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Modelle

Baumsuchmethoden

- Blinde Methoden
 (ohne Vorinformation, wo nach Lösung zu suchen ist)
 - depth-first-search
 - breadth-first-search

- Informierte Methoden (Funktion, mittels der die Knoten bewertet werden)
 - Hill-climbing
 - Best-first
 - A*-search

Algorithmen für ODER-Graphen
 A0*-search

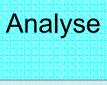
 Algorithmen für UND-/ODER-Graphen

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Baumsuchansatz zum Handlungsreisendenproblem

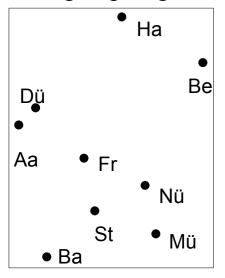
- Untersuchung eines Baumes aller möglichen Wege und Ausgabe des kürzesten Weges
 - Problemdimension n-Städte => (N-1)! verschiedene Wege
 - Zeitkomplexität O(N!), z.B. N=10 => 3.628.800 Wege, kombinatorische Explosion
 - Heuristische Suche: (Heuristik ist eine Technik, die die Effizienz eines Suchvorganges verbessert, wobei möglicherweise die Forderung nach Vollständigkeit geopfert wird.)
 - Divide and Conquer (Teile und Erobere): (Zerlege das Problem in kleinere Teilprobleme, löse diese und setze wieder zusammen, vorausgesetzt, es handelt sich um ein zerlegbares Problem).
 - Methode nahester Nachbar: in jedem Schritt die örtlich beste Alternative auswählen (Tiefensuche, best-first)
 - Wähle eine beliebige Anfangsstadt
 - Betrachte alle noch nicht besuchten Städte und besuche davon die nächstgelegene (z.B. Thiessen-Polygone)
 - Wiederhole diesen Schritt, bis alle Städte besucht sind.
 - Zeitkomplexität: o(n*n) 0> 100 mögliche Vergleiche

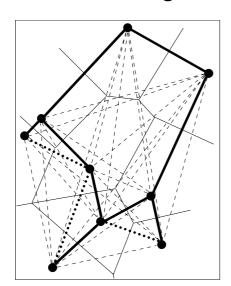
Grundlagen

Geometrische M.

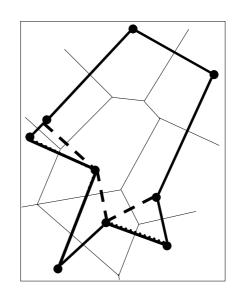
Topologische M.

Mengenmethoden


Statistische M.


Rundreiseproblem

Heuristischer Ansatz mittels Baumsuchmethode und Thiessen-Diagrammen


Ausgangslage

Thiessen-Diagramme Voronoi-Diagramme

Wegealternativen

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Sortieren großer Datenbestände

- Sortiervorgänge sind mit die häufigsten Vorgänge in IT-Anwendungen
 - nach Namen
 - nach Größen
 - nach Häufigkeiten
- Sortierverfahren wie quicksort, heapsort, shellsort
 - Ordnung O(n^2) bis O(n)
- Sortieren durch Divide/Sort and Merge

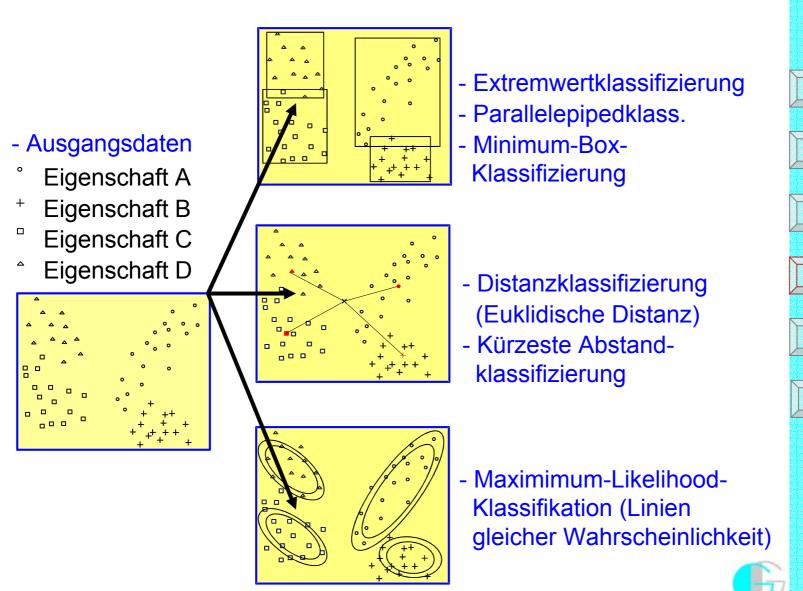
Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.

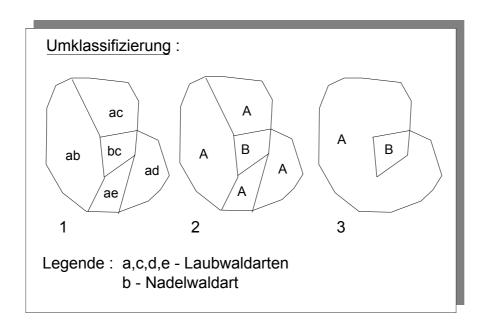
Modelle

75

Klassifizierung (Räumliche Clusterbildung)

Analyse

Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden

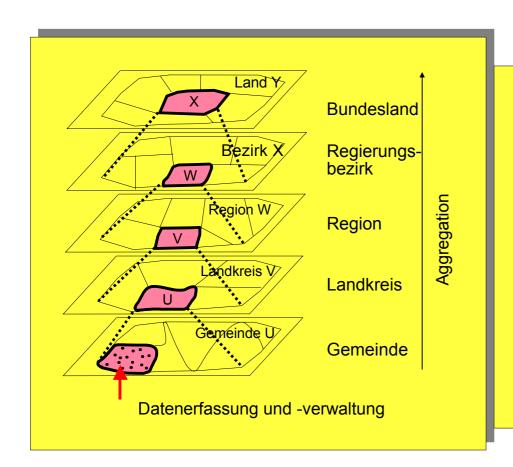
Statistische M.

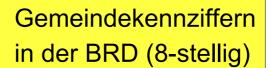
Reklassifizierung

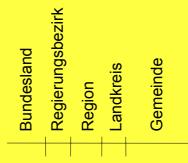
Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden


Statistische M.

Aggregation

08118001

= Affalterbach

Analyse

Grundlagen

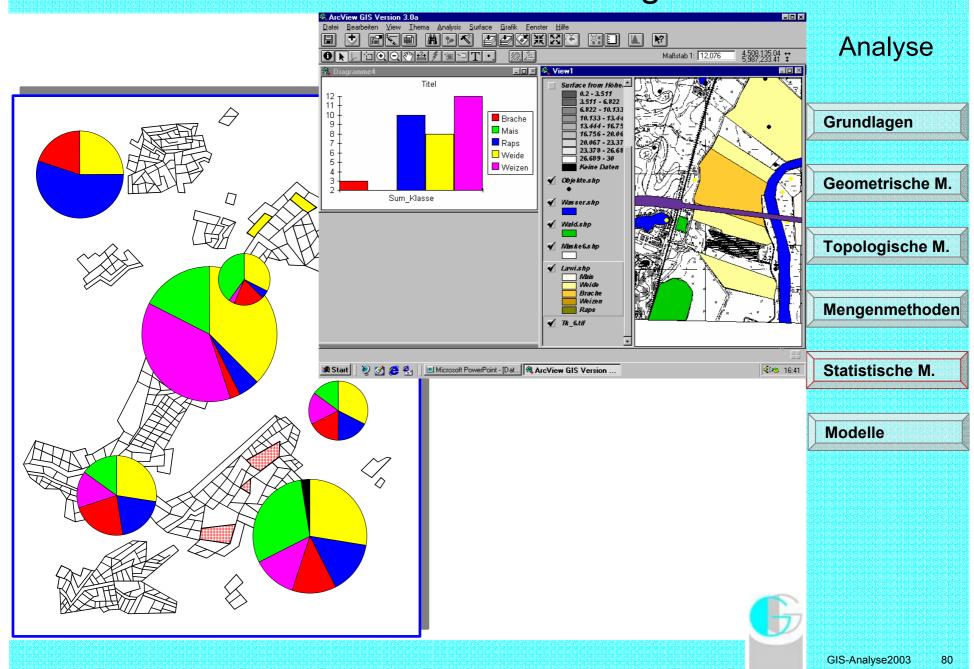
Geometrische M.

Topologische M.

Mengenmethoden

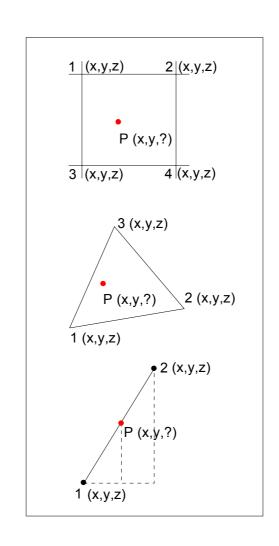
Statistische M.

Statistische Methoden


- Beschreibende Statistik
- Analytische Statistik
- Univariate -, bivariate und multivariate Statistik
- Geo-Statistik
- Bedingungen (Ausgleichungsrechnung)
- Interpolationen
- Klassifikation
- Andere

79

Zähl- und beschreibende Statistik/Diagramme



Interpolation

im Raster

im Dreieck

in Linie

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

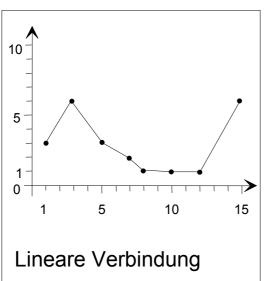
Statistische M.

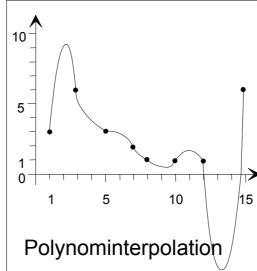
Interpolationsansätze in der Ebene

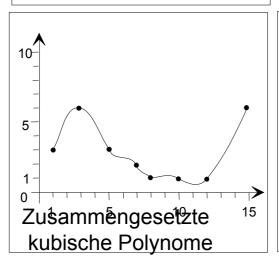
Ti Si

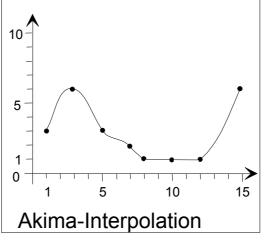
136

5 3


7 2


8 1


10 1


12 1

15 6

Analyse

Grundlagen

Geometrische M.

Topologische M.

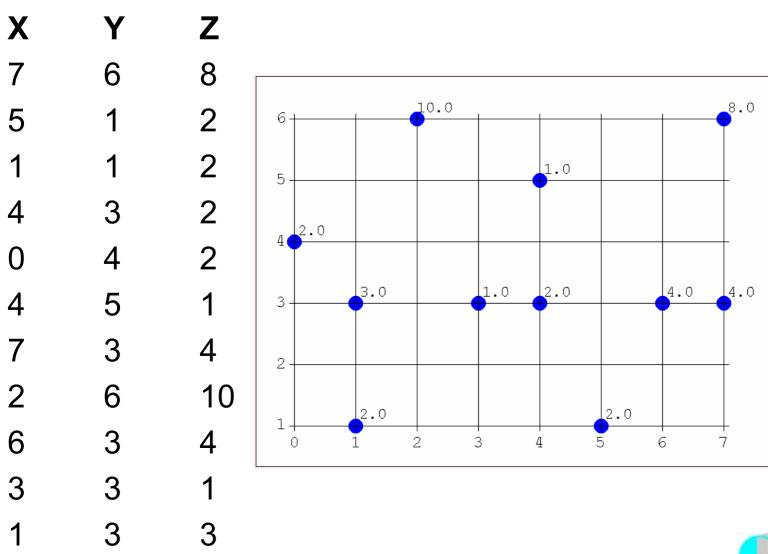
Mengenmethoden

Statistische M.

Interpolation/Approximation von Oberflächen

- TIN-Interpolation
- Interpolation mittels Flächensummation
- Interpolation mittels Kleinster Quadrate-Methoden
- Stückweise lineare Polynome
- Polynominterpolation
- Kriging

Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden

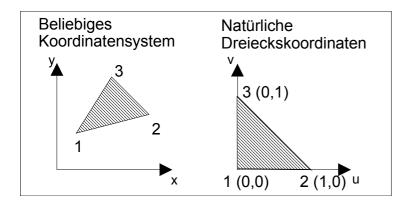
Statistische M.

Interpolation – ein Beispiel

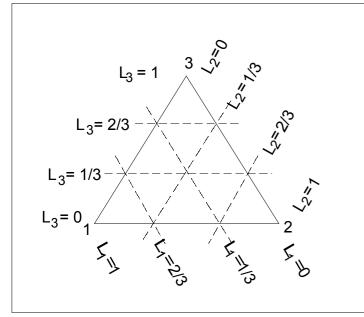
Analyse

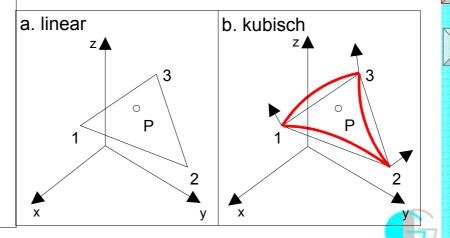
Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden


Statistische M.


Dreiecksinterpolation

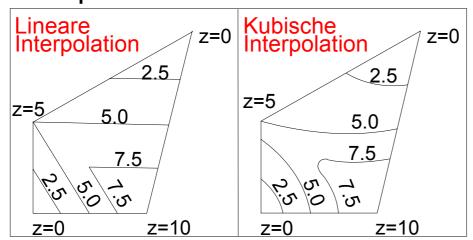
Natürliches
 Koordinatensystem

Interpolationsansatz

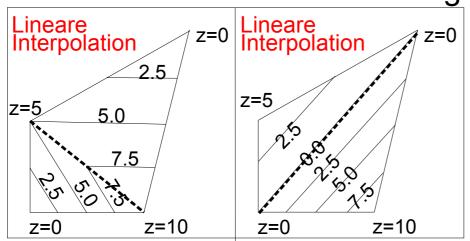
Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden


Statistische M.

Dreiecksinterpolation

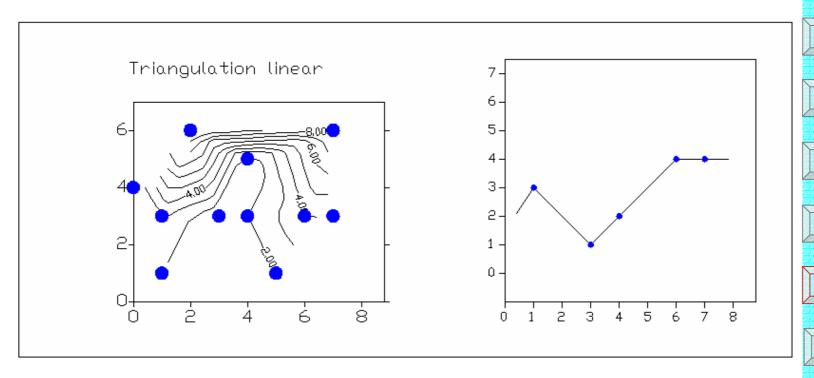
Interpolationsansatz

Problem: Dreiecksvermaschung

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.

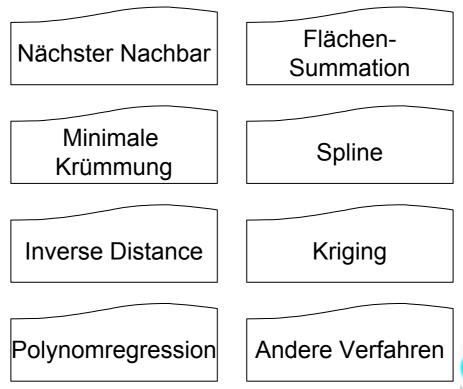
Dreiecksinterpolation-linear

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

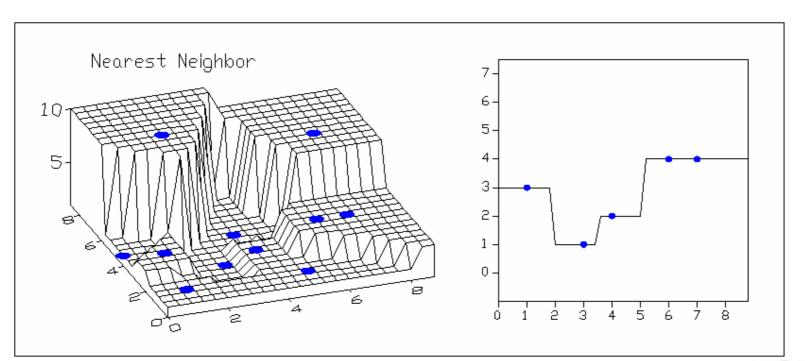
Statistische M.

Interpolation/Approximation im Raster

- Interpolation mittels Flächensummation
- Interpolation mittels Kleinster Quadrate-Methoden
- Stückweise lineare Polynome
- Polynominterpolation
- Kriging

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.

Interpolation-Nächster Nachbar

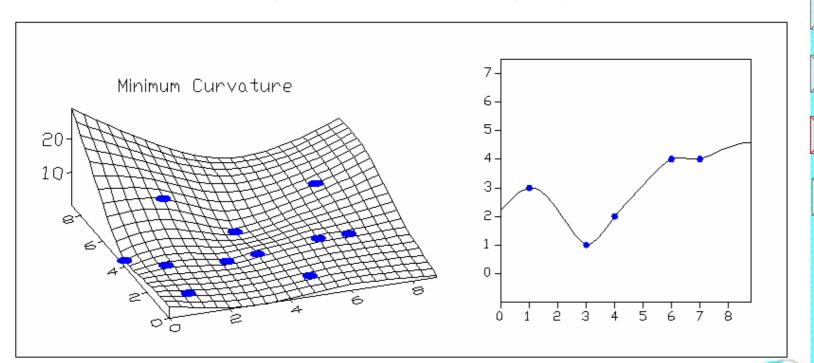
- Übernahme der z-Komponente vom nächstliegenden Nachbar
- Setzt genügend dichte Punktverteilung voraus

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

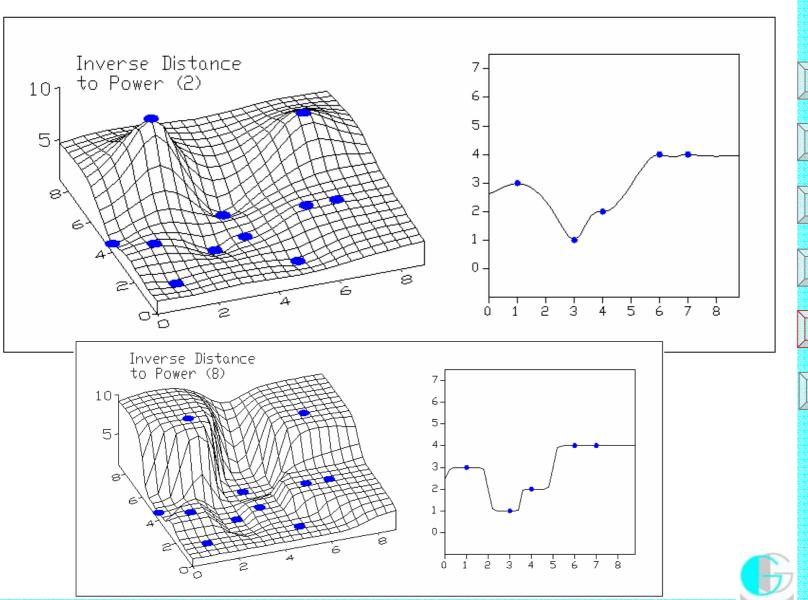
Statistische M.

Interpolation-Minimale Krümmung

- Anwendung besonders in Geowissenschaften
- Dünne deformierbare Platte durch alle Punkte
- Glatte Oberfläche
- Iterative Lösung eines Gleichungssystems

Analyse

Grundlagen


Geometrische M.

Topologische M.

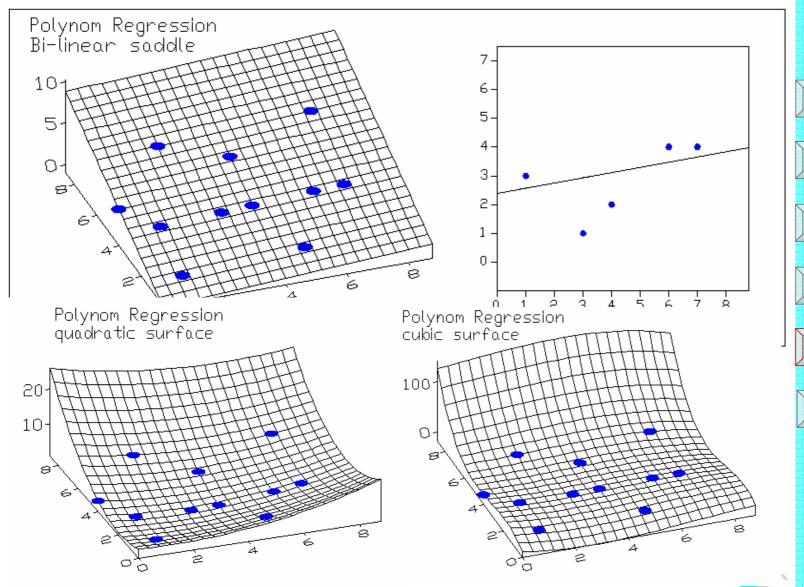
Mengenmethoden

Statistische M.

Inverse distance weighting-Interpolation

Analyse

Grundlagen


Geometrische M.

Topologische M.

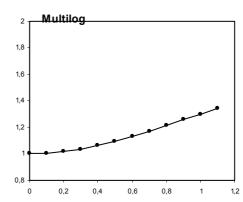
Mengenmethoden

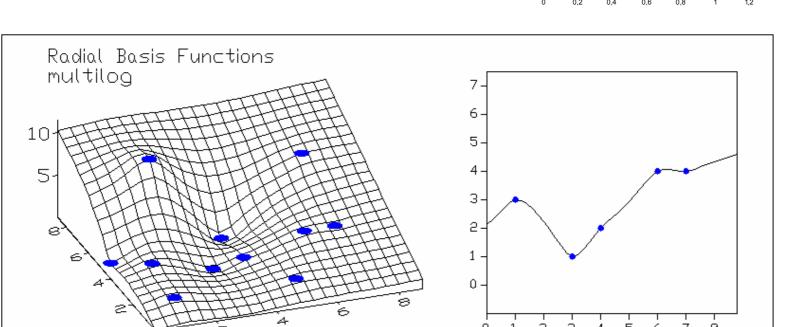
Statistische M.

Approximation-Polynomiale Regression

Analyse

Grundlagen


Geometrische M.


Topologische M.

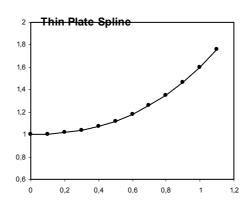
Mengenmethoden

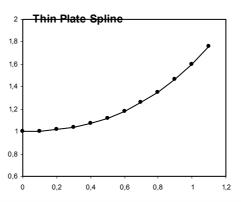
Statistische M.

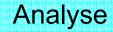
Flächensummation: Multilogarithmic Kernel

Analyse

Grundlagen

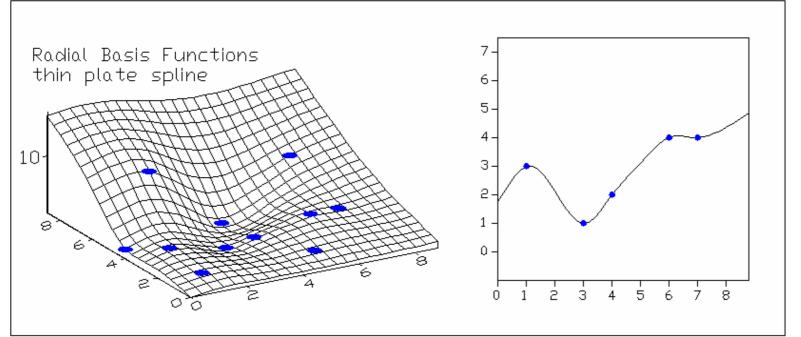

Geometrische M.


Topologische M.


Mengenmethoden

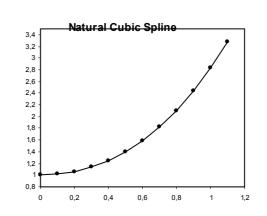
Statistische M.

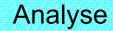
Flächensummation: Thin plate spline als Kernel


Grundlagen

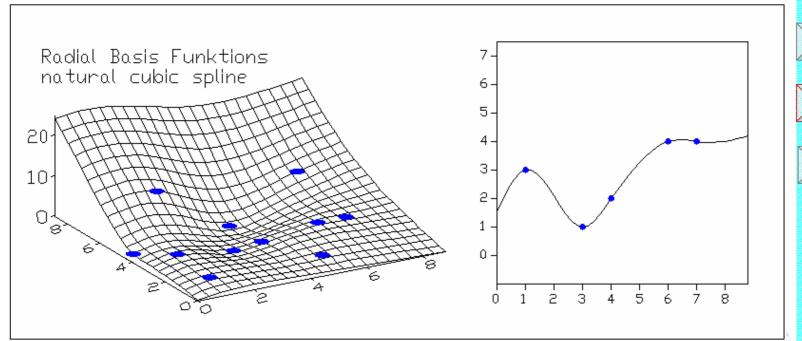
Geometrische M.

Topologische M.

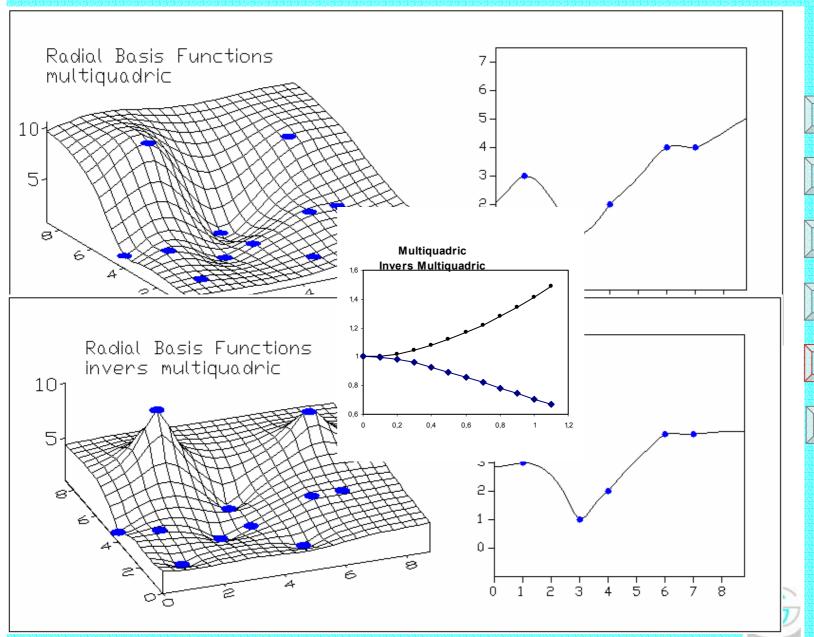

Mengenmethoden


Statistische M.

Flächensummation: Cubic splines als Kernel


Grundlagen

Geometrische M.


Topologische M.

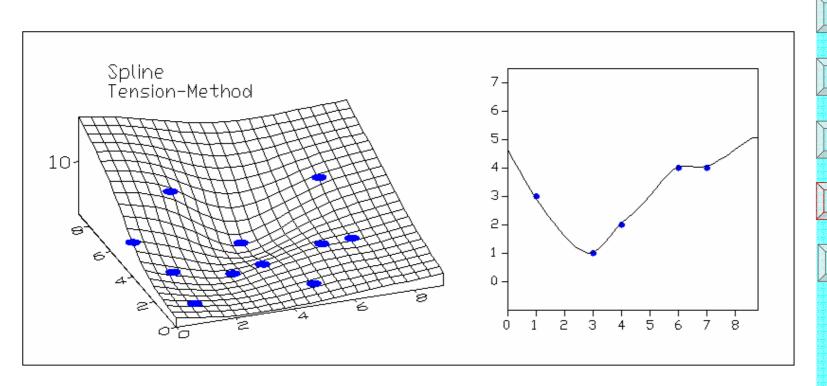
Mengenmethoden

Statistische M.

Flächensummation: Multiquadratic Kernel

Analyse

Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

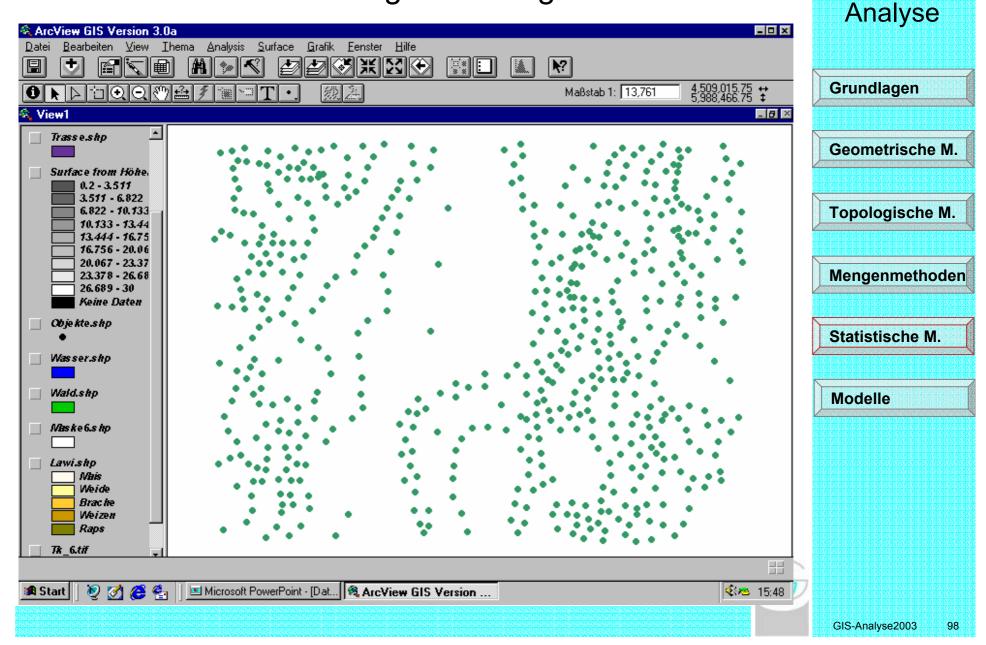
Splines - Kubische Polynome

Analyse

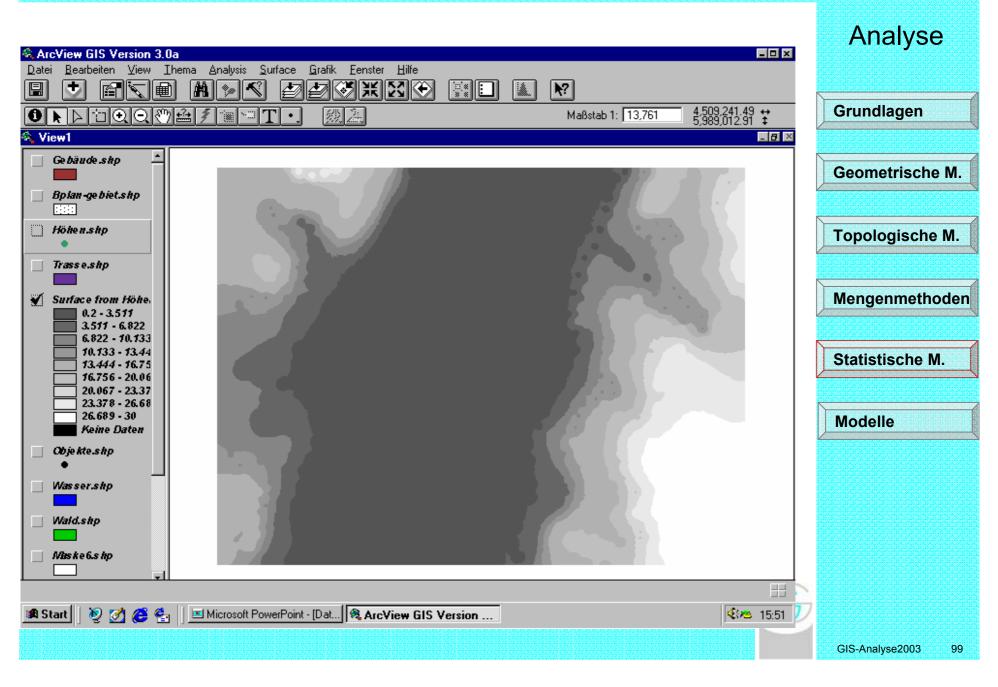
Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

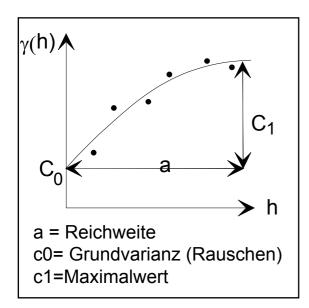
Statistische M.



Beispiel zu statistischen Methoden in DGM

Punkte aus Höhenliniendigitalisierungen

Digitales Geländemodell => Isolinieninterpolation IDW



Geostatistik: Variogramm I

Annahme: Die räumliche Variabilität jeder Zufallsvariable Z läßt sich durch die Summe von 3 Komponenten erklären.

$$Z(x) = m(x) + \varepsilon'(x) + \varepsilon''(x)$$

mit: m(x) = Trendfläche, $\varepsilon'(x)$ = zufällige Komponente, $\varepsilon''(x)$ = zufälliges Rauschen

Variogramm bestimmt Einfluß des einzelnen Punktes auf die Zufallsvariable

$$\gamma(h)=1/2n\Sigma(z(xi)-z(xi+h))^2$$

Analogien: Korrelationsfunktionen

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Modelle

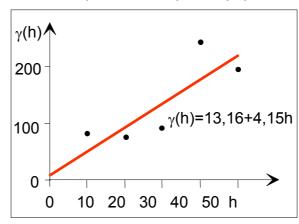
100

Geostatistik: Variogramm II

• Typische Schätzfunktionen für das Variogramm

Lineare Regression: $\gamma(h) = co + b h$

Sphärisches Modell:


$$\gamma(h) = c0 + c1\{3h/2a - 0.5 (h/a)^3\}$$
 für $0 < h < a$

$$\gamma$$
(h) = c0 + c1 für h >= a

Gaußsches Modell: $\gamma(h) = c0 + c1 (1 - exp(-h/a)^2)$

Beispiel:

Variogrammschätzung mittels linearem Modell

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Geostatistik: Kriging I

- Kriging beschreibt einen exakten Interpolator, in den die einzelnen Stützpunkte mit einem Gewicht abgeleitet aus dem Variogramm über den Abstand eingehen.
- Beispiel: Gegeben seien 5 Punkte in der Ebene mit den Meßwerten (3,4,2,4,6) und den Abständen untereinander und zum zu interpolierenden Punkt 0.

```
    1
    2
    3
    4
    5
    0

    1
    0.0
    5.0
    9.8
    5.0
    3.2
    4.3

    2
    5.0
    0.0
    6.3
    3.6
    4.4
    2.9

    3
    9.8
    6.3
    0.0
    5.0
    7.2
    5.5

    4
    5.0
    3.6
    5.0
    0.0
    2.3
    1.0

    5
    3.2
    4.4
    7.2
    2.3
    0.0
    2.0
```

 Als Variogrammfunktion sei ein sphärisches Modell mit c0=2.5, c1=7.5 und a=10.0 vorab bestimmt.

Geostatistik: Kriging II

• Zu lösendes Gleichungssystem: $\mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} \lambda \\ h \end{bmatrix}$

1 2 3 4 5
1 2.500 7.656 9.996 7.656 5.977 1.000 7.039 0.0189
2 ... 2.500 8.650 6.375 7.131 1.000 5.671 0.1762
3 2.500 7.656 9.200 1.000
$$\mathbf{b} = 8.064$$
 λ = -0.0109
4 2.500 5.401 1.000 3.621 λ = -0.0109
5 ... λ ... 2.500 1.000 4.720 0.1945
... 0.000 1.000 -0.1676

Interpolation des gesuchten Punktes 0 und der Varianz nach

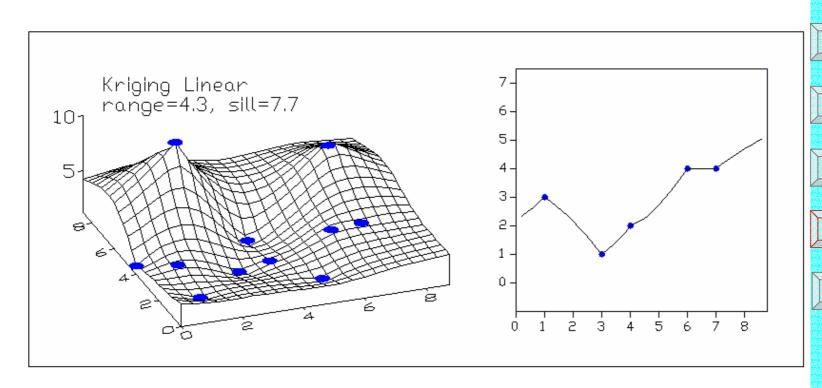
$$z(x0) = \sum \lambda i \ z(xi) = 0.0189*3+0.1762*4-0.0109*2+0.6212*4+0.1945*6 = 4.392$$

 $\sigma^2 = \sum \lambda i \ bi + h = 0.0189*7.039+0.1762*5.671-0.0109*8.064+0.6212*3.621$
 $+0.1945*4.720-0.1676 = 4.044$

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

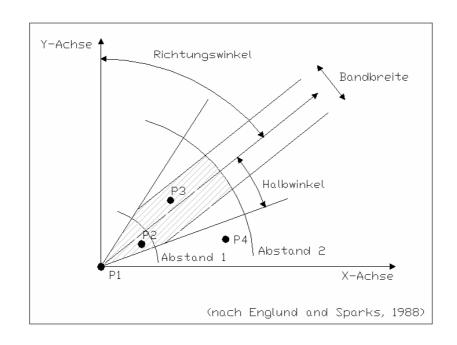
Statistische M.

Kriging mit linearem Variogrammverlauf

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

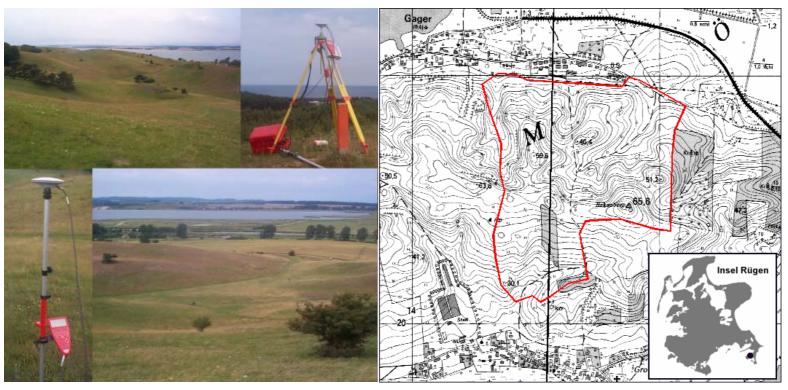
Statistische M.

Kriging - Anisotropie

Analyse

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

Statistische M.

Qualität der Interpolationsmethoden im Vergleich

Fläche: ca. 63ha

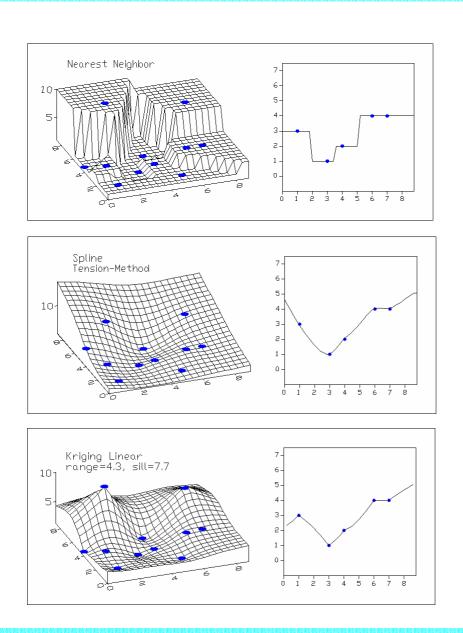
Höhendifferenz: 60m

Erfasst mittels: DGPS – 850 Punkte

Messzeit: ca. 14 Stunden

Grundlagen

Geometrische M.


Topologische M.

Mengenmethoden

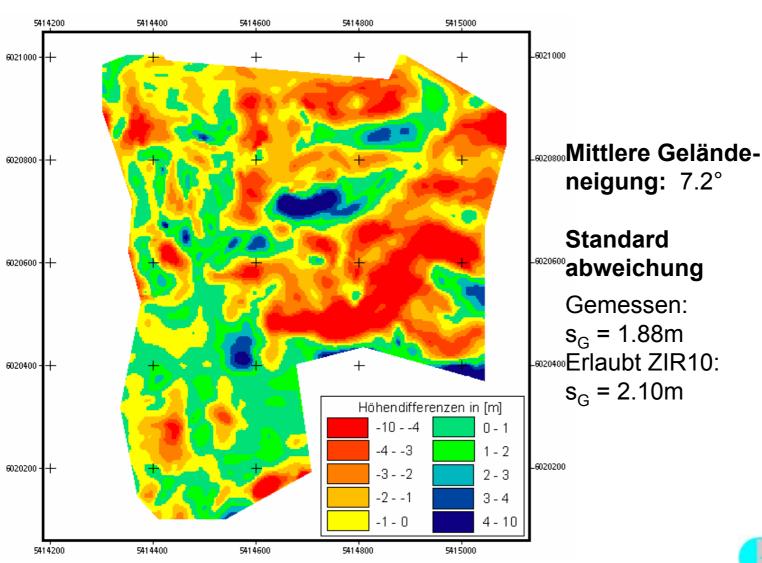
Statistische M.

Qualitätsvergleich: Rechenzeit

20

Analyse

Grundlagen


Geometrische M.

Topologische M.

Mengenmethoden

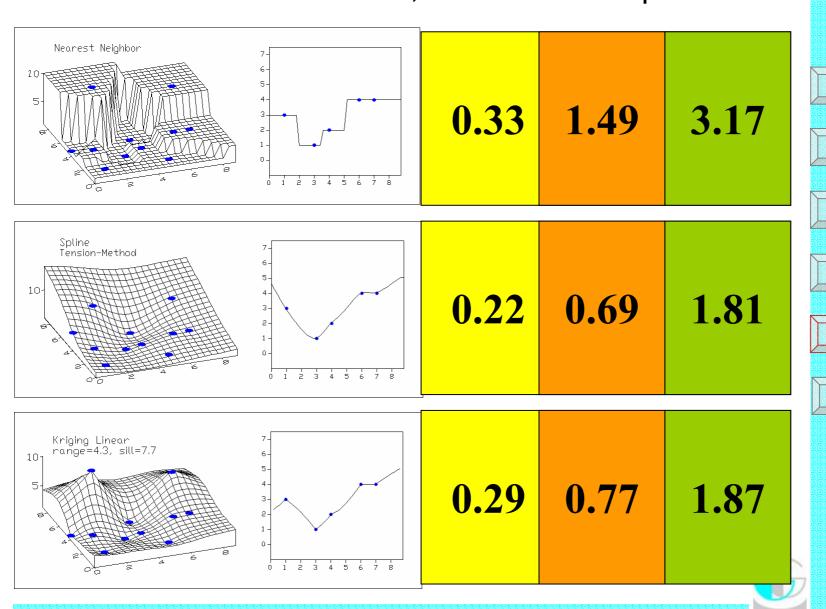
Statistische M.

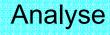
Qualitätsvergleich: Höhenliniendigitalisierung versus DGPS

Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden

Statistische M.

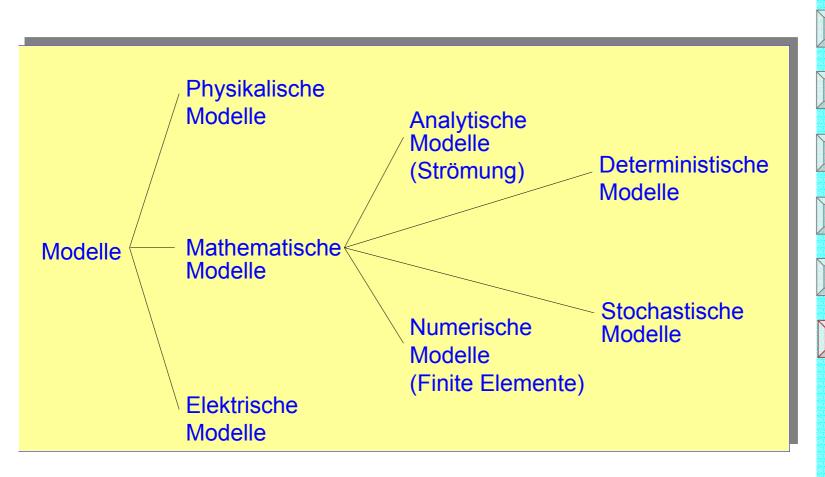
Qualitätsvergleich: Standardabweichung (m) basiert auf 80% der Punkte, 20% true error points

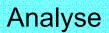
Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden


Statistische M.


- Punkthafte Modelle (Interpolation ..)
- Linienhafte Modelle (Netzflußberechnung ..)
- Flächenhafte Modelle (Ausbreitung ..)
- Simulationen
- Andere

Klassifizierung der Modelle (G. Teutsch, 1992)

Grundlagen

Geometrische M.

Topologische M.

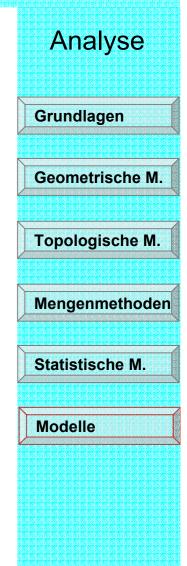
Mengenmethoden

Statistische M.

Geographische Modelle I: Stochastische Ansätze

 Das Verhalten geographischer Systeme wird eher vom Zufall bestimmt. Für solche Systeme werden die Anfangshypothesen mittels Wahrscheinlichkeitstheorie definiert

Räumliche Wahrscheinlichkeitsmodelle


- Verteilungsmuster von Fabrikstandorten
- Korrelation zwischen Umsätzen und Beschäftigtenzahl,

Analphabetentum und sozialem Status

 Autokorrelation bei Wählern bestimmter Parteien

Geographische Entscheidungs- modelle

- Entscheidung über Anbauorte für Getreide

Geographische Modelle II: Deterministische Ansätze

 Das Verhalten geographischer Systeme wird von physikalischen Gesetzen bestimmt und kann deshalb exakt vorhergesagt werden.

Modelle für Kaskadensysteme

Raum-Zeit-Modelle

Modelle für räuml. Interaktion

Modelle für räuml. Zuordnung

- Modelle von Bevölkerungswanderungen
- Modelle zur Unters. von Ökosystemstabilitäten
 - Temperaturverteilung in Bodenprofilen
 - Wasserdurchfluß im Boden
 - Stadterwärmungsbereiche

(auch Gravitationsmodelle genannt)

- Bewegung von Konsumentenkapital zw. Regionen
- Bew. von Arbeitern zwischen Wohn- u. Arbeitsort

(auch Transportmodelle genannt)

- Konsumenten zu Anbietern
- Schüler zu Schulen

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Kartographisches Modellieren

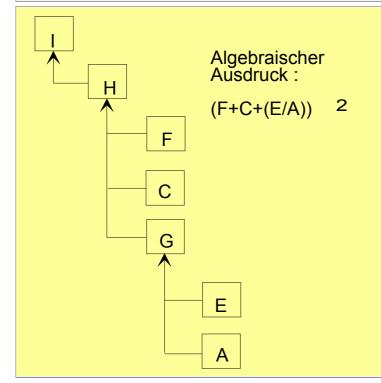
- C.D. Tomlin (1983), (1990), MAP(Map Analysis Package)
- Ziel : Zerlegung der Verarbeitung in beliebig kombinierbare Bausteine und Definition einer Kartenalgebra

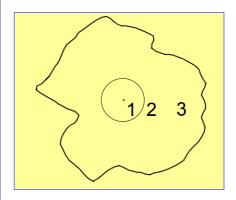
Begriffe:

Verarbeitung in der kartographischen Modelliersprache

Dateninterpretation : Eingabe Verarbeitung Ausgabe

Folie


Operation


Folie

Folie

- Dateninterpretationsoperationen :

- Prozedur:

1 = f(Position) 2 = f(Nachbarschaft) 3 = f(Zone)

Analyse

Grundlagen

Geometrische M.

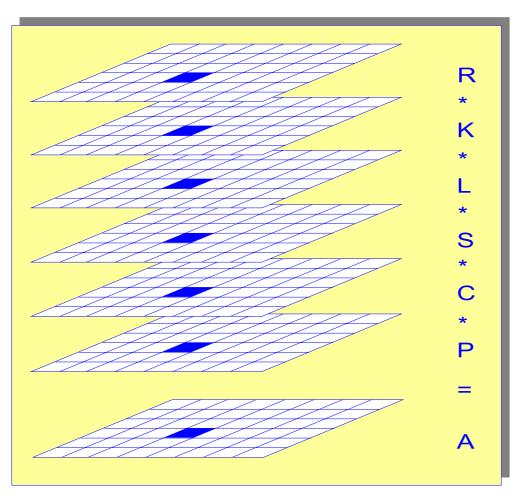
Topologische M.

Mengenmethoden

Statistische M.

Beispiel: Sportplatzstandort

- Standort für Sportanlage mit folgenden Bedingungen:
 - A: Die ausgewählte Fläche soll weniger als 7% geneigt sein
 - B: Die Fläche muß zusammenhängend größer als 40.000qm sein.
 - C: Das Areal muß möglichst außerhalb (> 50m) von bebautem Gebiet sein.
 - D: Das Areal soll verkehrstechnisch angebunden sein,
 d.h. nicht weiter als 50m vom bestehenden Verkehrsnetz entfernt liegen.


Lösungsansatz: Sportanlage

Analyse Mengentheoretische Betrachtung und kartographisches Modell Grundlagen В Geometrische M. C D Topologische M. E = A AND B AND C AND D Mengenmethoden Selektion Neigungs-Neigung DGM Α < 7 % karte Statistische M. Vergrößerte Geeignete Puffer Selektion Nutzungs-Nutzungs-Nutzung 50m außen besiedelt Modelle fläche fläche Flächenver-E=Potent. Geeignete Flächengröße Vergrößerte schneidung Kandidaten Flächen 40000 gm Nutzungsfläche Differenz В Geeignete Nutzungsfläche Puffer beid-Wegenetz D seitig 50 m

GIS-Analyse2003

117

Bodenerosionsmodell

Bodenabtragsgleichung A = R*K*L*S*C*P aus K. Kraus (1991) nach Wischmeier/Smith (1978)

A = durchschn. jährlicher Abtrag [t/ha]

R = Regenfaktor = f(Niederschlag)

K = Bodenerodierbarkeitsfaktor

= f(Bodenart) aus Bodenkarte

L = Hanglängenfaktor = f(Ackerlänge)

S = Hangneigungsfaktor = f(Hangneigung) aus

DGM

C = Bewirtschaftungsfaktor

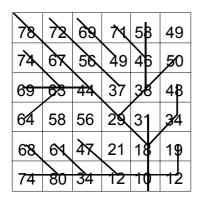
= f(Fruchtfolge)

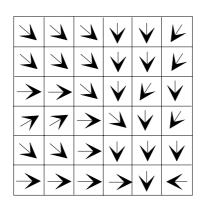
P = Erosionsschutzfaktor

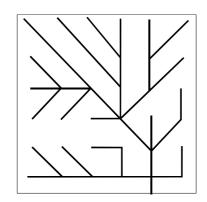
Analyse

Grundlagen

Geometrische M.


Topologische M.


Mengenmethoden


Statistische M.

Erosionsmodelle: Kaskading

Analyse

Grundlagen

Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Hinterland delimitation

- Minimiere die Summe der Anfahrtswege aller Nutzer einer bestimmten Einrichtung (z.B. Schüler zu Schulen)
 - Lokalisiere die Wohngebäude aller Schüler im Studiengebiet
 - Lege ein Raster mit n Zellen über die Karte der Wohngebiete und bestimme die Anzahl Oi (i=1,n) der Schüler pro Rasterzelle
 - Lokalisiere die m Schulen im Studiengebiet und bestimme ihre Schülerkapazitäten Dj (j=1,m)
 - Bestimme die Transportkostenmatrix cij mit den durchschnittlichen Entfernungen von jeder Rasterzelle n zu jeder Schule m.
 - Berechne die optimale Transportmatrix mittels linearer Optimierung des Systems
 - Konvertiere die Struktur der optimalen
 Transportmatrix in Einzugsbereiche um Schulen

$$\sum_{i=1,n,j=1,m} T_{ij} c_{ij} = \min_{i=1,n,j=1,m}$$

$$\sum_{i=1,n} T_{ij} = D_{j}$$

$$\sum_{i=1,n} T = O_{i}$$

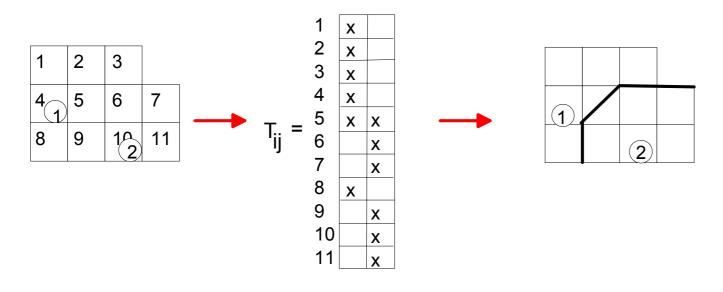
$$\sum_{j=1,m} I_{ij} = 0$$

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Beispiel Schuleinzugsbereiche

 Minimiere die Summe der Anfahrtswege aller Schüler von n=11 Regionen zu m=2 Schulen (Hinterland delimitation)

Analyse

Grundlagen

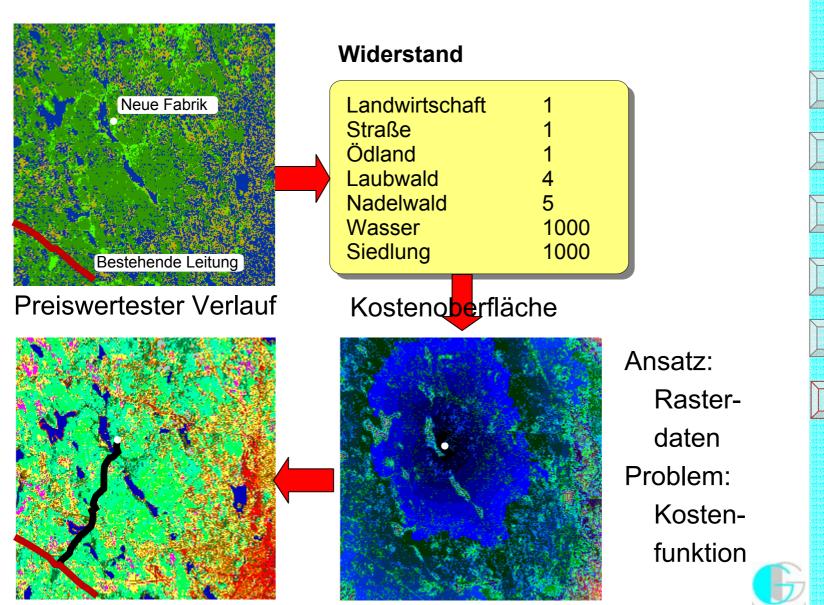
Geometrische M.

Topologische M.

Mengenmethoden

Statistische M.

Modelle


Ausgangslage

Optimierungsergebnis

Ergebnissituation

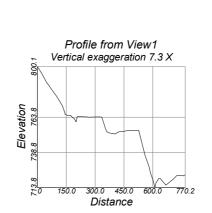
Kostenfunktionen in der Leitungsplanung

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

3D-Analysefunktionen

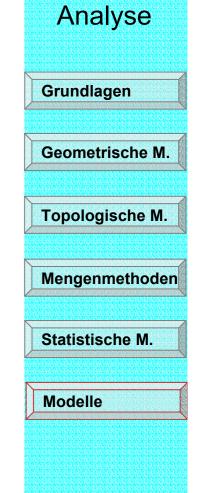
- Volumenberechnung
- 3D und 4D-Interpolation
- Neigungen, Gradienten
- Boolesche Analysen
- Analysen innerhalb der Objekte
- Buffer in 3D
- Oberflächen-, Netzwerk- und Pfadanalysen
- Auf- und Abtragsberechnungen Volumenschnitte, 3D-Schnitte
- Projektionen und Transformationen in 3 D (Kugel, Ellipsoid ..)
- Sichtbarkeitsuntersuchungen
- Körperverschneidung, -durchdringung

Analyse

Grundlagen

Geometrische M.

Topologische M.


Mengenmethoden

Statistische M.

Datenanalyse = Unterscheidungsmerkmal zwischen GIS

- Geometrische Operationen meist vorhanden
- Flächenverschneidung als absolutes Minimum
- Topologische Operationen eher eingeschränkt
- Mengenmethoden wie Sortieren, Suchen, Abfragen etc. vorhanden
- Einfache beschreibende Statistik vorhanden, Interpolationen für DGM, Geostatistik eher selten
- Modelle sind eher speziell auf Anwendungsebene zumeist außerhalb von GIS vorhanden

